GS/ECON 5010 Answers to Assignment 3 W2005

$Q 1$. What are the market price, and aggregate quantity sold, in long-run equilibrium in a perfectly competitive market for which the demand function has the equation

$$
Q=2000-5 p
$$

(where Q is aggregate quantity demanded, and p the price), if there is free entry by identical firms to the industry, each of which has the long-run total cost function

$$
T C=600 q-80 q^{2}+4 q^{3}
$$

where q is the quantity produced by the firm?
$A 1$. Given the total cost function, the average cost function is

$$
\begin{equation*}
A C=600-80 q+4 q^{2} \tag{1-1}
\end{equation*}
$$

and the marginal cost function is

$$
\begin{equation*}
M C=600-160 q-12 q^{2} \tag{1-2}
\end{equation*}
$$

From (1-1),

$$
\begin{equation*}
A C^{\prime}=8 q-80 \tag{1-3}
\end{equation*}
$$

which shows that the average cost curve is U-shaped : it decreases with q if and only if $8 q<80$, or $q<10$.

At $q=10$,

$$
A C=600-80(10)+4(10)^{2}=200
$$

and

$$
M C=600-160(10)+12(10)^{2}=200
$$

so that the marginal cost curve cuts the average cost curve at the minimum average cost, as required.

In long-run equilibrium, with free entry, each firm must be operating at its minimum average cost, which here is $A C=200$, attained at an output level of $q=10$.

Due to free entry (and the U-shaped average cost curve), the long-run supply curve is horizontal, at a height of 200 . The equilibrium price must be 200 , no matter what the demand curve.

So $p=200$, which means, from the equation of the demand curve, that aggregate quantity demanded Q is $2000-5(200)=1000$. In long-run equilibrium, there will be 100 identical firms in the industry, each producing 10 units at a cost of 200 per unit.

Q2. Suppose that a market contains 1 million identical consumers, each of whom has preferences which can be represented by the utility function

$$
U\left(X, q_{1}, q_{2}\right)=X+\left(q_{1}^{\alpha}+q_{2}^{\alpha}\right)^{\beta}
$$

where X is consumption of a numéraire good, and q_{1} and q_{2} are consumption of goods produced by firms $\# 1$ and $\# 2$ respectively, and where $\alpha<1$ and $\beta<1$.

Firms 1 and 2 each have the identical total cost function, $C(q, \mathbf{w})=c q$, where c is a constant.
i Which levels of output for the two firms would maximize their combined profits?
ii What levels of output would firms \#1 and \#2 produce if they behaved as Cournot duopolists?
(You may assume that $q_{1}=q_{2}$ in the solutions to each of the problems.)
$A 2$. Given the preferences of consumers, what is each consumer's inverse demand function? The first-order conditions for consumer utility maximization imply that

$$
\begin{gather*}
U_{X}=1=\lambda p_{X}=\lambda \tag{2-1}\\
U_{1}=\alpha \beta\left(q_{1}^{\alpha}+q_{2}^{\alpha}\right)^{\beta-1} q_{1}^{\alpha-1}=\lambda p_{1} \tag{2-2}\\
U_{2}=\alpha \beta\left(q_{1}^{\alpha}+q_{2}^{\alpha}\right)^{\beta-1} q_{2}^{\alpha-1}=\lambda p_{2} \tag{2-3}
\end{gather*}
$$

where U_{i} is the marginal utility with respect to q_{i}.
Since good X is numéraire, equation $(2-1)$ implies that $\lambda=1$, so that equations $(2-2)$ and ($2-3$) define the inverse demand functions of the two firms. If firm 1 produces q_{1} million units of output, and firm 2 produces q_{2} million, then equations $(2-2)$ and $(2-3)$ define the prices p_{1} and p_{2} that will clear the markets for the two goods.

So if firm 1 produces q_{1} million units, its profits will be $\left(p_{1}-c\right) q_{1}$, where

$$
p_{1}=\alpha \beta\left(q_{1}^{\alpha}+q_{2}^{\alpha}\right)^{\beta-1} q_{1}^{\alpha-1}
$$

and similarly, firm 2 will earn profits of $\left(p_{2}-c\right) q_{2}$, where

$$
p_{2}=\alpha \beta\left(q_{1}^{\alpha}+q_{2}^{\alpha}\right)^{\beta-1} q_{2}^{\alpha-1}
$$

i Joint profits of the two firms are $\left(p_{1}-c\right) q_{1}+\left(p_{2}-c\right) q_{2}$. If $q_{1}=q_{2}=q$, then

$$
p_{1}=p_{2}=\alpha \beta\left[2 q^{\alpha}\right]^{\beta-1} q^{\alpha-1}=\alpha \beta 2^{\beta-1} q^{\alpha \beta-1}
$$

so that joint profits are

$$
\begin{equation*}
2\left(\alpha \beta 2^{\beta-1} q^{\alpha \beta-1}-c\right) q=2\left[\left(\alpha \beta 2^{\alpha(\beta-1)} q^{\alpha \beta}\right)-c q\right] \tag{2-4}
\end{equation*}
$$

Maximizing expression $(2-4)$ with respect to q implies that

$$
\begin{equation*}
\alpha^{2} \beta^{2} 2^{\beta-1} q^{\alpha \beta-1}=c \tag{2-5}
\end{equation*}
$$

or

$$
\begin{equation*}
q^{*}=c^{\gamma}\left[\alpha^{2} \beta^{2} 2^{\beta-1}\right]^{-\gamma} \tag{2-6}
\end{equation*}
$$

where

$$
\gamma=\frac{1}{\alpha \beta-1}
$$

ii If firm 1 behaves as a Cournot duopolist, it chooses its own output q_{1} to maximize its own profit $\left(p_{1}-c\right) q_{1}$, taking the other firm's output q_{2} as given. That means it tries to maximize

$$
\alpha \beta\left(q_{1}^{\alpha}+q_{2}^{\alpha}\right)^{\beta-1} q_{1}^{\alpha}-c q_{1}
$$

with respect to q_{1}.
The first-order condition for firm 1's profit maximization is

$$
\begin{equation*}
\alpha^{2} \beta\left[\left(q_{1}^{\alpha}+q_{2}^{\alpha}\right)^{\beta-2} q_{1}^{\alpha-1}\right]\left[(\beta-1) q_{1}^{\alpha}+\left(q_{1}^{\alpha}+q_{2}^{\alpha}\right)\right]-c=0 \tag{2-7}
\end{equation*}
$$

Firm 2 has an analogous optimality condition

$$
\begin{equation*}
\alpha^{2} \beta\left[\left(q_{1}^{\alpha}+q_{2}^{\alpha}\right)^{\beta-2} q_{2}^{\alpha-1}\right]\left[(\beta-1) q_{2}^{\alpha}+\left(q_{1}^{\alpha}+q_{2}^{\alpha}\right)\right]-c=0 \tag{2-8}
\end{equation*}
$$

In Cournot-Nash equilibrium, both firms are on their reaction functions, defined by equations $(2-7)$ and $(2-8)$. If the equilibrium is symmetric, so that $q_{1}=q_{2}=q$, equation ($2-7$) (or $(2-8))$ becomes

$$
\begin{equation*}
\alpha^{2} \beta\left[2 q^{\alpha} 2^{\beta-2} q^{\alpha-1}\left[(\beta-1) q^{\alpha}+2 q^{\alpha}\right]=c\right. \tag{2-9}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha^{2} \beta(\beta+1) 2^{\beta-2} q^{\alpha \beta-1}=c \tag{2-10}
\end{equation*}
$$

so that

$$
\begin{equation*}
q^{c}=c^{\gamma}\left[\alpha^{2} \beta(\beta+1) 2^{\beta-2}\right]^{-\gamma} \tag{2-11}
\end{equation*}
$$

Comparing $(2-6)$ and $(2-10)$,

$$
q^{c}=\left[\frac{2 \beta}{\beta+1}\right]^{\gamma} q^{*}
$$

Since $\beta<1,2 \beta=\beta+\beta<\beta+1$. But since $\gamma<0$, therefore, $q^{c}>q^{*}$.

Q3. Solve for the quantity produced by each firm, the price, and each firm's profits, if there were J firms acting as Cournot oligopolists, each producing a homogeneous good, for which the market demand is linear

$$
p=a-b Q
$$

where $Q \equiv q_{1}+q_{2}+\cdots+q_{J}$ was industry output, if each firm had the (same) total cost function

$$
C(q)=c q^{2}
$$

for some positive constant c ?
$A 4$ Each firm's profits $p q_{i}-c\left(q_{i}\right)^{2}$ would be

$$
\begin{equation*}
\pi_{i}=\left(a-b\left[q_{1}+q_{2}+\cdots+q_{J}\right]\right) q_{i}-c\left(q_{i}\right)^{2} \tag{3-1}
\end{equation*}
$$

maximizing π_{i} with respect to q_{i} yields the first-order condition

$$
\begin{equation*}
a-b Q_{_i}=2(b+c) q_{i} \tag{3-2}
\end{equation*}
$$

where $Q_{-i} \equiv \sum_{j \neq i} q_{j}$ is the sum of all other firms' quantities produced.
In a symmetric Nash equilibrium, $q_{1}=q_{2}=\cdots=q_{J}=q$, so that $Q_{-i}=(J-1) q$ and equation (3-2) becomes

$$
\begin{equation*}
[(J+1) b+2 c] q=a \tag{3-3}
\end{equation*}
$$

or

$$
\begin{equation*}
q=\frac{a}{(J+1) b+2 c} \tag{3-4}
\end{equation*}
$$

Industry output Q equals $J q$ in a symmetric Nash equilibrium, so that

$$
\begin{equation*}
Q=\frac{a J}{(J+1) b+2 c} \tag{3-5}
\end{equation*}
$$

Since $p=a-b Q$,

$$
p=a \frac{b+2 c}{(J+1) b+2 c}
$$

and the profit of each firm is

$$
\pi_{i}=p_{i} q_{i}-c q_{i}^{2}=\frac{a^{2}(b+2 c)}{[(J+1) b+2 c]^{2}}-\frac{a^{2} c}{[(J+1) b+2 c]^{2}}=\left[\frac{a^{2}(b+c)}{[(J+1) b+2 c]^{2}}\right]^{2}
$$

So (as in the case of constant marginal costs), total industry profit decreases with the number of firms J in the industry.

Q4. What would be the equilibrium price, and the equilibrium profits of each firm, in a market with two Bertrand oligopolists, producing goods which are imperfect substitutes for each other, with quantity demanded of the products of the two firms being

$$
q_{1}=\frac{p_{1}^{r-1}}{p_{1}^{r}+p_{2}^{r}}
$$

$$
q_{2}=\frac{p_{2}^{r-1}}{p_{1}^{r}+p_{2}^{r}}
$$

where $r<0$, if each firm's cost of producing c units were $c q$ (where c is a positive constant).. (You may restrict attention to symmetric equilibria, in which $p_{1}=p_{2}$.)

A4. The profit of firm 1 , if it charges a price p_{1} (and if firm 2 charges a price of p_{2}), is

$$
\begin{equation*}
\left(p_{1}-c\right) q_{1}=\frac{p_{1}^{r}}{p_{1}^{r}+p_{2}^{r}}-\frac{c p_{1}^{r-1}}{p_{1}^{r}+p_{2}^{r}} \tag{4-1}
\end{equation*}
$$

Maximizing this profit with respect to p_{1} gives the first-order condition

$$
\begin{equation*}
\frac{p_{1}^{r-1}}{\left[p_{1}^{r}+p_{2}^{r}\right]^{2}}\left[r p_{2}^{r}-c(r-1) p_{1}^{r-1}-c(r-1) p_{2}^{r} p_{1}^{-1}+c r p_{1}^{r-1}\right]=0 \tag{4-2}
\end{equation*}
$$

In a symmetric equilibrium, in which $p_{1}=p_{2}=p$, equation $(4-2)$ becomes

$$
r p=c(r-2)
$$

or

$$
\begin{equation*}
p=\frac{r-2}{r} c \tag{4-3}
\end{equation*}
$$

Q5. Another model of duopoly is that of von Stackelberg, in which firms choose output levels sequentially. That is, firm 1 chooses its output. Firm 2 observes what output level firm 1 has chosen, and then chooses its own output level. What output levels would the 2 firms choose, if they behaved in this manner, if they both produced an identical product for which the market inverse demand function had the equation

$$
p=21-\left(q_{1}+q_{2}\right)
$$

if each firm had a total cost function

$$
T C=\begin{array}{rll}
4+q_{i} & \text { if } & q_{i}>0 \\
0 & \text { if } & q_{i}=0
\end{array}
$$

where q_{i} is the output level of firm i ?

A5. This problem must be solved backwards. First, what is firm 2's reaction to firm 2 producing an output level of q_{1} ? If $q_{2}>0$, then

$$
\begin{equation*}
\pi_{2}=p q_{2}-T C\left(q_{2}\right)=\left[21-\left(q_{1}+q_{2}\right)\right] q_{2}-\left(4+q_{2}\right) \tag{5-1}
\end{equation*}
$$

Maximizing π_{2} with respect to q_{2} yields the first-order condition

$$
\begin{equation*}
21-q_{1}-2 q_{2}-1=0 \tag{5-2}
\end{equation*}
$$

or

$$
\begin{equation*}
q_{2}=10-\frac{q_{1}}{2} \tag{5-3}
\end{equation*}
$$

But firm 2 will choose to produce a positive level of output only if it earns a positive profit. What is its profit if firm 1 has chosen an output level of q_{1}, and if firm 2 has responded by choosing $q_{2}=10-\left(q_{1} / 2\right)$? In this case the price is $21-q_{1}-q_{2}$, which means that

$$
\begin{equation*}
p=21-q_{1}-\left(10-\frac{q_{1}}{2}\right)=11-\frac{q_{1}}{2} \tag{5-4}
\end{equation*}
$$

Substituting back into (5-1),

$$
\begin{equation*}
\pi_{2}=\left[10-\frac{q_{1}}{2}\right][p-1]-4=\left[10-\frac{q_{1}}{2}\right]^{2}-4 \tag{5-5}
\end{equation*}
$$

So firm 2 can earn a positive profit only if

$$
\left[10-\frac{q_{1}}{2}\right]^{2}>4
$$

which is the same thing as

$$
10-\frac{q_{1}}{2}>2
$$

or

$$
q_{1}<16
$$

So if $q_{1} \geq 16$, then firm 2's best response is to produce nothing at all, since the fixed costs (of 4) imply that it would lose money at any positive level of production. If $q_{1}<16$, firm 2 should produce the output level defined by equation $(5-3)$.

Now consider firm 1's decision. It knows that if it produces an output level of $q_{1}<16$, then firm 2 will follow by producing $10-\frac{q_{1}}{2}$, resulting in a price of $11-\frac{q_{1}}{2}$. So firm 1's profit, if it chooses an output level of q_{1} initially, will be

$$
\begin{equation*}
\pi_{1}=p q_{1}-T C\left(q_{1}\right)=\left[10-\frac{q_{1}}{2}\right] q_{1}-4 \tag{5-6}
\end{equation*}
$$

Maximizining ($5-6$) with respect to q_{1} yields the first-order condition

$$
q_{1}=10
$$

resulting in profits of

$$
\pi_{1}=\left[10-\frac{10}{2}\right] 10-4=46
$$

On the other hand, if firm 1 produces an output of 16 or more, then firm 2 will shut down completely. That would result in a price of $21-q-1$, and a profit to firm 1 of

$$
\begin{equation*}
\left(21-q_{1}\right) q_{1}-q_{1}-4=20 q_{1}-q_{1}^{2}-4 \tag{5-7}
\end{equation*}
$$

The expression $(5-7)$ is decreasing in q_{1} when $q_{1} \geq 16$. That means that, if firm 1 were to find it profitable to have $q_{1} \geq 16$, that $q_{1}=16$ would be the best level of output to choose. That level is the smallest level of output for firm 1 which will induce firm 2 to shut down completely.

At $q_{1}=16$ (and $q_{2}=0$), equation ($5-7$) shows that

$$
\pi_{1}=20(16)-256-4=60
$$

Since $60>46$, then the best strategy for firm 1 is to produce an output just high enough that firm 2 cannot make a profit. The Stackelberg equilibrium here has $q_{1}=16$ and $q_{2}=0$.

