Do all 5 questions. Each counts 20\%.

1. What does the contract curve look like for a 2 -person, 2 -good exchange economy, if the preferences of the two people could be represented by the utility functions

$$
\begin{aligned}
& u^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=100-\frac{1}{x_{1}^{1}}-\frac{1}{x_{2}^{1}} \\
& u^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=x_{2}^{2}+100 \ln x_{1}^{2}
\end{aligned}
$$

where x_{j}^{i} is person i 's consumption of good j ?
2. What are all the allocations in the core of a 4 -person exchange economy in which all 4 people had the same preferences, represented by the utility function

$$
u^{i}\left(x_{1}^{i}, x_{2}^{i}\right)=x_{1}^{i} x_{2}^{i}
$$

if person 1 and person 2 each had the endowment vector (2,0), and if person 3 and person 4 each had the endowment vector $(0,2)$?
3. How would the equilibrium prices of the goods vary with the people's endowments in a $2-$ person, 2 -good exchange economy, if each person's preferences could be represented by the utility function

$$
u^{i}\left(\left(\mathbf{x}^{i}\right)=a \ln x_{1}^{i}+b \ln x_{2}^{i}\right.
$$

where x_{j}^{i} was person i 's consumption of good j ?
4. Find all the Nash equilibria (pure and mixed) in the following strategic-form two-person game.

	$L L$	L	R	$R R$
$t t$	$(20,0)$	$(5,4)$	$(100,2)$	$(10,30)$
t	$(0,5)$	$(10,10)$	$(40,5)$	$(20,6)$
b	$(3,60)$	$(5,10)$	$(10,20)$	$(7,50)$
$b b$	$(4,40)$	$(8,50)$	$(20,60)$	$(12,60)$

5. Find all the Nash equilibria (in pure or mixed strategies) to the following two-person game in strategic form.

$$
L \quad R
$$

t	$(2,6)$	$(6,4)$
b	$(0,4)$	$(10,8)$

