Definitions

1. A function $f: \Re^{n} \rightarrow \Re$ is quasi-concave if, for any x , the set

$$
\succeq(\mathbf{x})=\left\{\mathbf{y} \in \Re^{n} \mid f(\mathbf{y}) \geq f(\mathbf{x})\right\}
$$

is a convex set.
2. A function $f: \Re^{n} \rightarrow \Re$ is quasi-concave if

$$
f\left(t \mathbf{x}^{1}+(1-t) \mathbf{x}^{2}\right) \geq \min \left[\mathbf{f}\left(\mathbf{x}^{1}\right), \mathbf{f}\left(\mathbf{x}^{2}\right)\right]
$$

for any x^{1} and x^{2} in \Re^{n}, and any $0<t<1$
3. A function $f: \Re^{n} \rightarrow \Re$ is quasi-concave if

$$
\mathbf{v}^{\prime} \mathbf{H}(\mathbf{x}) \mathbf{v} \leq 0
$$

for any $\mathbf{x} \in \Re^{n}$ and any direction \mathbf{v} such that

$$
\nabla f(\mathbf{x}) \cdot \mathbf{v}=0
$$

where $\mathbf{H}(\mathbf{x})$ is the matrix of second derivatives of $f(\mathbf{x})$ and $\nabla f(\mathbf{x})$ is the vector of first derivatives of the function $f(\mathbf{x})$.
4.A function $f: \Re^{n} \rightarrow \Re$ is quasi-concave if the determinants of the 2 -by-2, 3 -by- $3, \ldots, n-$ by- n matrices in the top left corner of the bordered Hessian matrix

$$
\mathbf{H}^{*} \equiv\left(\begin{array}{ccccc}
0 & f_{1} & f_{2} & \ldots & f_{n} \\
f_{1} & f_{11} & f_{12} & \ldots & f_{1 n} \\
f_{2} & f_{21} & f_{22} & \ldots & f_{2 n} \\
\cdot & \cdot & \cdot & \ldots & \cdot \\
. & \cdot & \cdot & \ldots & \cdot \\
f_{n} & f_{n 1} & f_{n 2} & \ldots & f_{n n}
\end{array}\right)
$$

alternate in sign.

That is, the function $f(\mathbf{x})$ is quasi-concave if, for every value of x ,

$$
\left(\begin{array}{cc}
0 & f_{1} \\
f_{1} & f_{11}
\end{array}\right)
$$

has a negative determinant,

$$
\left(\begin{array}{ccc}
0 & f_{1} & f_{2} \\
f_{1} & f_{11} & f_{12} \\
f_{2} & f_{21} & f_{22}
\end{array}\right)
$$

has a positive determinant, and so on (where f_{i} is the first derivative of $f(\mathbf{x})$ with respect to x_{i}, and $f_{i j}$ is the second derivative of $f(\mathbf{x})$ with respect to x_{i} and x_{j})

