Constant Elasticity of Substitution [CES] Preferences

$$
u(\mathbf{x})=\left(x_{1}^{\rho}+x_{2}^{\rho}+\cdots+x_{n}^{\rho}\right)^{1 / \rho}
$$

$$
\text { where }-\infty<\rho<1 \text { and } \rho \neq 0
$$

marginal utilities

$$
\frac{\partial u}{\partial x_{i}}=\frac{1}{\rho}\left(x_{1}^{\rho}+x_{2}^{\rho}+\cdots+x_{n}^{\rho}\right)^{1 / \rho-1} \rho x_{i}^{\rho-1}
$$

first-order conditions for utility maximization

$$
\left(x_{1}^{\rho}+x_{2}^{\rho}+\cdots+x_{n}^{\rho}\right)^{1 / \rho-1} x_{i}^{\rho-1}-\lambda p_{i}=0 \quad i=1,2, \cdots, n
$$

along with the budget constraint

$$
\sum_{j} p_{j} x_{j}=y
$$

manipulating the equations

Take the first-order condition for consumption of commodity i, and divide both sides by the firstorder condition for the consumption of commodity 1 . What results is

$$
\left(\frac{x_{i}}{x_{1}}\right)^{\rho-1}=\frac{p_{i}}{p_{1}}
$$

or

$$
\begin{equation*}
x_{i}=\left(\frac{p_{i}}{p_{1}}\right)^{1 /(\rho-1)} x_{1} \tag{1}
\end{equation*}
$$

which implies that

$$
\begin{array}{r}
p_{i} x_{i}=p_{i}\left(p_{i}\right)^{1 /(\rho-1)} p_{1}^{-1 /(\rho-1)} x_{1} \\
=\left(p_{i}\right)^{\rho /(\rho-1)}\left(p_{1}\right)^{-1 /(\rho-1)} x_{1} \tag{2}\\
=p_{i}^{r} p_{1}^{1-r} x_{1}
\end{array}
$$

Now let

$$
r \equiv \frac{\rho}{\rho-1}
$$

Add up equation 2 over all n commodities to get

$$
\begin{equation*}
\sum_{j=1}^{n}\left(p_{j} x_{j}\right)=\left[\sum_{j=1}^{n} p_{j}^{r}\right]\left(p_{1}\right)^{1-r} x_{1} \tag{3}
\end{equation*}
$$

The budget constraint says that the left side of equation 3 is y, which means that

$$
x_{1}=\frac{p_{1}^{r-1} y}{\sum_{j=1}^{n} p_{j}^{r}}
$$

which is the Marshallian demand function for commodity number 1 . Substituting back into equation (1) shows that, for any commodity i,

$$
x_{i}(\mathbf{p}, y)=\frac{p_{i}^{r-1} y}{\sum_{j=1}^{n} p_{j}^{r}}
$$

defining the Marshallian demand functions when preferences are CES.

