Slutsky Equation

u : the level of utility that a person gets when she chooses her best consumption bundle, given prices pand income y
it then follows that

$$
\begin{equation*}
x_{i}^{h}(\mathbf{p}, u)=x_{i}^{m}(\mathbf{p}, e(\mathbf{p}, u)) \tag{1}
\end{equation*}
$$

and that's true whatever are the prices, as long as $u=v(\mathbf{p}, y)$.

So we can differentiate both sides of (1) with respect to any price p_{j}, and both sides of the equation must be equal. So

$$
\begin{equation*}
\frac{\partial x_{i}^{h}(\mathbf{p}, u)}{\partial p_{j}}=\frac{\partial x_{i}^{m}(\mathbf{p}, y)}{\partial p_{j}}+\frac{\partial x_{i}^{m}(\mathbf{p}, y)}{\partial y} \frac{\partial e(\mathbf{p}, y)}{\partial p_{j}} \tag{2}
\end{equation*}
$$

where the differentiation comes using the chain rule, and recognizing that $y=e(\mathbf{p}, u)$. Now Shepherd's Lemma said that

$$
\begin{equation*}
\frac{\partial e(\mathbf{p}, u)}{\partial p_{j}}=x_{j}^{h}(\mathbf{p}, u) \tag{3}
\end{equation*}
$$

and equation (1) says that

$$
\begin{equation*}
x_{j}^{h}(\mathbf{p}, u)=x_{j}^{m}(\mathbf{p}, y) \tag{4}
\end{equation*}
$$

which means that (2) can be written

$$
\begin{equation*}
\frac{\partial x_{i}^{h}(\mathbf{p}, u)}{\partial p_{j}}=\frac{\partial x_{i}^{m}(\mathbf{p}, y)}{\partial p_{j}}+\frac{\partial x_{i}^{m}(\mathbf{p}, y)}{\partial y} x_{j}^{m} \tag{5}
\end{equation*}
$$

