YORK UNIVERSITY Faculty of Graduate Studies
 Final Examination December 8, 2004

Economics 5010 AF3.0 : Applied Microeconomics S. Bucovetsky time $=2.5$ hours

Do any 6 of the following 10 questions. All count equally.

1. If a person's preferences can be represented by the utility function

$$
u\left(x_{1}, x_{2}\right)=x_{1}+2 \sqrt{x_{2}}
$$

find the person's Marshallian demand functions for each good, her indirect utility function, her Hicksian demand function, and her expenditure function.
2. If a person had a fixed amount of wealth W_{0} to allocate between a safe asset and a risky asset, how would her expected-utility-maximizing portfolio vary with her wealth W_{0}, and with the parameter α, if her utility of wealth could be written

$$
U(W)=\frac{1}{1-\alpha} W^{1-\alpha}
$$

where α is a positive parameter?
3. If a firm's production function were homogeneous of degree h, for some $h>0$, what form would the firm's long run total cost function take? Explain briefly.
continued
4. What would be the equilibrium price and quantity in the long run, in a competitive industry in which there were many identical firms, each with the same long run total cost function

$$
T C(q)=q^{3}-12 q^{2}+60 q
$$

where q was the output of the firm, if the market demand curve for the output of the firms had the equation

$$
Q=540-5 p
$$

where Q was the total quantity demanded, and p the price of the good?
5. What would be the equilibrium output in a Cournot duopoly, if there were a price ceiling \bar{p} imposed on the market?
6. What is the contract curve in the following two-person, two-good exchange economy?

Person 1's preferences can be represented by the utility function

$$
U^{1}\left(x_{1}^{1}, y_{1}^{1}\right)=x_{1}^{1}+\ln x_{2}^{1}
$$

and person 2's by the utility function

$$
U^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=x_{1}^{2} x_{2}^{2}
$$

where x_{j}^{h} is person h 's consumption of good j. The total endowment of goods is 7 units of good 1 , and 4 of good 2.
7. Show that every competitive equilibrium allocation (Walrasian equilibrium allocation) in an exchange economy must be in the core.

continued

8. Write down a game in strategic form, which has a Nash equilibrium in which some player chooses a weakly dominated strategy. Does the game have any other Nash equilibria?
9. Write down the strategic form of the following game, a slightly modified version of Bertrand's model, and find all its Nash equilibria :

- two firms produce an identical good, for which the market demand curve can be written $Q=3-p$, where Q is quantity demanded, and p is the price ; each firm's total cost of producing q units is q
- firms choose prices simultaneously ; firms wish to maximize profits
- buyers buy from the lowest-price firm ; if both firms charge the same price, then each firm serves half the market
- each firm's price must be a non-negative integer less than or equal to 3

10. (a) Write down the extensive form of the following signalling game :

- the two players are a worker, and a firm
- the wage is fixed at 2 ; the output of an uneducated worker of type a is worth a to the firm ; the output of an educated worker of type a is worth $a+1$
- the worker's ability level a can be either 1 or 2 ; the probability of either ability level is $1 / 2$; the worker knows her own ability, but the firm cannot observe the ability directly
- the worker moves before the firm ; she chooses whether or not to get an education ; the cost of education to her is $2 / a$, if her ability is a
- the firm observes whether or not the worker got educated ; he then chooses whether or not to offer a job (at a fixed wage 2) to the worker
(b) Show that there is a sequential (perfect Bayesian) equilibrium to this game, in which high-ability workers choose to get a diploma, and low-ability workers do not.

