$Q 1$. A consumer's expenditure function must be homogeneous of degree t in prices.
What is t ?
Explain briefly.
A1. Here $t=1$; the expenditure function is homogeneous of degree 1 . To see this, consider the consumer's cost minimization problem (for which the expenditure function is the solution). Suppose that the quantities $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ solve this minimization. That means that

$$
\begin{gather*}
U\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)=u \tag{1-1}\\
\mathbf{p} \cdot \mathbf{x}^{*} \leq \mathbf{p} \cdot \mathbf{x} \quad \text { for } \quad \text { any } \quad \mathbf{x} \quad \text { with } \quad U(\mathbf{x}) \geq u \tag{1-2}
\end{gather*}
$$

where \mathbf{p} is the vector of prices, and u is the required level of utility for the consumer.
Now suppose that all prices increase by a factor of k, to $\left(k p_{1}, k p_{2}, \cdots, k p_{n}\right)$. Equation (1-1) still holds, and equation $(1-2)$ implies that

$$
\begin{equation*}
k \mathbf{p} \cdot \mathbf{x}^{*} \leq k \mathbf{p} \cdot \mathbf{x} \quad \text { for } \quad \text { any } \quad \mathbf{x} \quad \text { with } \quad U(\mathbf{x}) \geq u \tag{1-3}
\end{equation*}
$$

so that \mathbf{x}^{*} is still the cost-minimizing consumption bundle when $k \mathbf{p}$ is the vector of prices. (This result shows that these cost-minimizing bundles, the Hicksian demands, are homogeneous of degree 0 in prices.)

Now

$$
\begin{equation*}
e(\mathbf{p}, u)=\sum_{i=1}^{n} p_{i} x_{i}^{*} \tag{1-4}
\end{equation*}
$$

so that

$$
\begin{equation*}
e(k \mathbf{p}, u)=\sum_{i=1}^{n} k p_{i} x_{i}^{*}=k e(\mathbf{p}, u) \tag{1-5}
\end{equation*}
$$

proving that the expenditure function is homogeneous of degree 1 in prices.

Q2. Derive the Hicksian (compensated) demand functions for a consumer whose preferences can be represented by the direct utility function

$$
u\left(x_{1}, x_{2}\right)=12-\frac{1}{\left(x_{1}\right)^{2}}-\frac{1}{\left(x_{2}\right)^{2}}
$$

A2. Solving the problem of minimizing $p_{1} x_{1}+p_{2} x_{2}$ subject to $12-\frac{1}{\left(x_{1}\right)^{2}}-\frac{1}{\left(x_{2}\right)^{2}}=u$ implies first-order conditions

$$
\begin{align*}
& \frac{2}{\left(x_{1}\right)^{3}}=\mu p_{1} \tag{2-1}\\
& \frac{2}{\left(x_{2}\right)^{2}}=\mu p_{2} \tag{2-2}
\end{align*}
$$

where μ is the Lagrange multiplier on the utility constraint. Equations $(1-1)$ and $(1-2)$ imply that

$$
\begin{equation*}
x_{2}=\left[\frac{p_{1}}{p_{2}}\right]^{1 / 3} x_{1} \tag{2-3}
\end{equation*}
$$

Substituting ($2-3$) into the utility constraint,

$$
\begin{equation*}
12-\frac{1}{\left(x_{1}\right)^{2}}-\left[\frac{p_{2}}{p_{1}}\right]^{2 / 3} \frac{1}{\left(x_{1}\right)^{2}} \tag{2-4}
\end{equation*}
$$

or

$$
\begin{equation*}
(12-u)\left(x_{1}\right)^{2}=\frac{\left(p_{1}\right)^{2 / 3}+\left(p_{2}\right)^{2 / 3}}{\left(p_{1}\right)^{2 / 3}} \tag{2-5}
\end{equation*}
$$

Dividing both sides by $12-u$, and taking square roots,

$$
\begin{equation*}
x_{1}=(12-u)^{-1 / 2}\left[\left(p_{1}\right)^{2 / 3}+\left(p_{2}\right)^{2 / 3}\right]^{1 / 2}\left(p_{1}\right)^{-1 / 3} \tag{2-6}
\end{equation*}
$$

which is the Hicksian demand function for good 1. Similarly

$$
\begin{equation*}
x_{2}=(12-u)^{-1 / 2}\left[\left(p_{1}\right)^{2 / 3}+\left(p_{2}\right)^{2 / 3}\right]^{1 / 2}\left(p_{2}\right)^{-1 / 3} \tag{2-7}
\end{equation*}
$$

Since $e(\mathbf{p}, u)=p_{1} x_{1}^{h}(\mathbf{p}, u)+p_{2} x_{2}^{h}(\mathbf{p}, u)$, equations $(2-5)$ and $(2-6)$ imply that

$$
e(\mathbf{p}, u)=(12-u)^{-1 / 2}\left[\left(p_{1}\right)^{2 / 3}+\left(p_{2}\right)^{2 / 3}\right]^{1 / 2}\left[\left(p_{1}\right)^{2 / 3}+\left(p_{2}\right)^{2 / 3}\right]
$$

or

$$
\begin{equation*}
e(\mathbf{p}, u)=(12-u)^{-1 / 2}\left[\left(p_{1}\right)^{2 / 3}+\left(p_{2}\right)^{2 / 3}\right]^{3 / 2} \tag{2-8}
\end{equation*}
$$

Differentiation of equation $(2-8)$ with respct to x_{1} and x_{2} respectively yields the expressions on the right side of equations $(2-6)$ and $(2-7)$, confirming Shephard's Lemma.

Q3. An expected-utility-maximizing person has utility of wealth function

$$
U(W)=\frac{1}{1-\beta} W^{1-\beta} \quad \beta>0
$$

For what value of π will the person be willing to accept a gamble which doubles her wealth with probability π, and loses her all her wealth with probability $1-\pi$?

A3. If the person does not accept the gamble, her expected utility is

$$
\begin{equation*}
E U_{i n i t}=\frac{1}{1-\beta} W^{1-\beta} \tag{3-1}
\end{equation*}
$$

If she accepts the gamble, her expected utility is

$$
\begin{equation*}
E U_{\text {gamble }}=\pi \frac{1}{1-\beta}(2 W)^{1-\beta} \tag{3-2}
\end{equation*}
$$

Therefore, she will accept the gamble if and only if

$$
\begin{equation*}
\pi 2^{1-\beta}>1 \tag{3-3}
\end{equation*}
$$

or

$$
\begin{equation*}
\pi>2^{\beta-1} \tag{3-4}
\end{equation*}
$$

Her willingness to accept the gamble does not depend on her initial wealth (since her utility-ofwealth function displays a constant coefficient of relative risk aversion) ; the required probability of winning π is an increasing function of her coefficient β of relative risk aversion ; the required probability π must exceed $1 / 2$.

And she will be unwilling to accept the bet, for any $\pi<1$, if her coefficient of relative risk aversion is 1 or more.

Q4. Derive the long-run supply curve for an industry consisting of a large number of identical firms, each of which has a long-run average cost curve with the equation

$$
A C(q)=q^{2}-12 q+50
$$

where q is the firm's output.
$A 4$. Here each firm has the same, U-shaped average cost curve.
Why is it U-shaped?

$$
A C^{\prime}(q)=2 q-12
$$

which is negative when $q<6$ and positive when $q>6$.
So each firm's average cost reaches a minimum at $q=6$, at which point $A C=14$.
At $q=6, M C=A C=14$, since $M C$ must equal $A C$ at the minimum of the average cost curve. (You can check this here. Here $T C=q^{3}-12 q^{2}+50 q$ so that $M C=3 q^{2}-24 q+50$.)

Each firm chooses an output level such that $p=M C$. Free entry and exit by firms in the long run implies that profits are zero for each identical firm, so that $p=A C$. If $p=A C=M C$, then each firm must be producing 6 units, at a marginal (and average) cost of 14 .

So the long run supply curve for the industry is horizontal, at a height of 14 .

