1. Prove Roy's Identity (the theorem relating Marshallian demand functions and the indirect utility function).
2. Is it possible that the following data represent the behaviour of a consumer with well-behaved preferences? In the table, p_{i}^{t} is the price of good i in year t and x_{i}^{t} is the quantity consumed of good i in year t.

t	p_{1}^{t}	p_{2}^{t}	p_{3}^{t}	x_{1}^{t}	x_{2}^{t}	x_{3}^{t}
1	1	1	1	10	2	8
2	3	1	3	5	12	4
3	1	2	1	8	1	10
4	1	1	3	8	6	7

3. An expected utility maximizer has utility-of-wealth function

$$
U(W)=200-\frac{1}{W}
$$

Calculate this person's risk premium for a gamble which offers a wealth of $2 X$ with probability 0.5 , and of a wealth of (0.5) X with probability 0.5 , where X is some positive number.
4. What is the cost function $C(\mathbf{w}, y)$ for a firm for which the production function is

$$
f\left(x_{1}, x_{2}\right)=\ln \left(x_{1}+1\right)+x_{2}
$$

where x_{i} is the quantity employed of input i ?

