Q1. Prove Roy's Identity (the theorem relating Marshallian demand functions and the indirect utility function).
$A 1$. Roy's Identity is

$$
\begin{equation*}
\frac{\partial v(\mathbf{p}, y)}{\partial p_{i}}=-\frac{\partial v(\mathbf{p}, y)}{\partial y} x_{i}(\mathbf{p}, y) \tag{1-1}
\end{equation*}
$$

where $v(\mathbf{p}, y)$ is the indirect utility function, \mathbf{p} the vector of prices faced by the consumer, y the income the consumer has to spend, and $x_{i}(\mathbf{p}, y)$ the consumer's Marshallian demand function for good i.

Theorem 1.6 in Jehle and Reny provides a proof of Roy's Identity, using the Envelope Theorem. An alternative (longer) proof uses the following two properties :

$$
\begin{equation*}
p_{1} x_{1}(\mathbf{p}, y)+p_{2} x_{2}(\mathbf{p}, y)+\cdots p_{n} x_{n}(\mathbf{p}, y)=y \tag{1-2}
\end{equation*}
$$

from the consumer's budget constraint, and

$$
\begin{equation*}
\frac{\partial u(\mathbf{x})}{\partial x_{i}}=\lambda p_{i} \tag{1-3}
\end{equation*}
$$

at the consumer's optimum, where $u(\mathbf{x})$ is the consumer's direct utility function, and λ is the multiplier on the consumer's budget constraint in her maximization problem (of maximizing $u(\mathbf{x})$ with resspect to \mathbf{x} subject to the budget constraint $\mathbf{p} \cdot \mathbf{x}=y)$.

By definition

$$
\begin{equation*}
v(\mathbf{p}, y)=u\left(x_{1}(\mathbf{p}, y), x_{2}(\mathbf{p}, y), \ldots, x_{n}(\mathbf{p}, y)\right) \tag{1-4}
\end{equation*}
$$

Differentiating $(1-4)$ with respect to p_{i} yields

$$
\begin{equation*}
\frac{\partial v(\mathbf{p}, y)}{\partial p_{i}}=\sum_{j=1}^{n} \frac{\partial u}{\partial x_{j}} \frac{\partial x_{j}(\mathbf{p}, y)}{\partial p_{i}} \tag{1-5}
\end{equation*}
$$

Substituting from $(1-3)$ into $(1-5)$

$$
\begin{equation*}
\frac{\partial v(\mathbf{p}, y)}{\partial p_{i}}=\lambda \sum_{j=1}^{n} p_{j} \frac{\partial x_{j}(\mathbf{p}, y)}{\partial p_{i}} \tag{1-6}
\end{equation*}
$$

Differentiating the budget constarint $(1-2)$ with respect to p_{i} yields

$$
\begin{equation*}
x_{i}(\mathbf{p}, y)+\sum_{j=1}^{n} p_{j} \frac{\partial x_{j}(\mathbf{p}, y)}{\partial p_{i}}=0 \tag{1-7}
\end{equation*}
$$

Substitution of $(1-7)$ into $(1-6)$ implies that

$$
\begin{equation*}
\frac{\partial v(\mathbf{p}, y)}{\partial p_{i}}=-\lambda x_{i}(\mathbf{p}, y) \tag{1-8}
\end{equation*}
$$

Next, differentiating the definition $(1-4)$ with respect to y implies that

$$
\begin{equation*}
\frac{\partial v(\mathbf{p}, y)}{\partial y}=\sum_{j=1}^{n} \frac{\partial x_{j}(\mathbf{p}, y)}{\partial y} \tag{1-9}
\end{equation*}
$$

Differentiation of the budget constraint $(1-2)$ with respect to y implies that

$$
\begin{equation*}
\sum_{j=1}^{n} p_{j} \frac{\partial x_{j}(\mathbf{p}, y)}{\partial y}=1 \tag{1-10}
\end{equation*}
$$

Substitution of $(1-3)$ and $(1-10)$ into $(1-9)$ therefore implies that

$$
\begin{equation*}
\frac{\partial v(\mathbf{p}, y)}{\partial y}=\lambda \tag{1-11}
\end{equation*}
$$

which means that $(1-8)$ is the same as $(1-1)$, completing the (long version of the) proof of Roy's Identity.
$Q 2$. Is it possible that the following data represent the behaviour of a consumer with well-behaved preferences? In the table, p_{i}^{t} is the price of good i in year t and x_{i}^{t} is the quantity consumed of good i in year t.

t	p_{1}^{t}	p_{2}^{t}	p_{3}^{t}	x_{1}^{t}	x_{2}^{t}	x_{3}^{t}
1	1	1	1	10	2	8
2	3	1	3	5	12	4
3	1	2	1	8	1	10
4	1	1	3	8	6	7

A2. If the costs of the different bundles in the different years are arranged in a matrix (in which the element in the i-th column of the j-th row is the cost of bundle \mathbf{x}^{i} in year j), the costs are

t	\mathbf{x}^{1}	\mathbf{x}^{2}	\mathbf{x}^{3}	\mathbf{x}^{4}
1	20	21	19	21
2	56	39	55	51
3	22	33	20	27
4	36	29	39	35

Bundle \mathbf{x}^{i} is revealed directly to be preferred to bundle \mathbf{x}^{j} if : in year i, bundle \mathbf{x}^{j} cost less than (or the same amount as) bundle \mathbf{x}^{i}. That is, \mathbf{x}^{i} d.r.p.t. \mathbf{x}^{j} if and only if $C_{i i} \geq C_{i j}$, where the $C_{i j}$'s are elements in the cost matrix above.

From that matrix, the only cases of one bundle being revealed referred to another occur in years 1 and 4 ; in years 2 and 3 , the bundle actually chosen is cheaper than any of the other three bundles, so that we cannot tell if she chose bundles x^{2} and x^{3} because she liked them more than the other bundles, or because they were cheaper.

In year $1, C_{11}>C_{13}$ so that year 1 data show that \mathbf{x}^{1} d.r.p.t. 3^{4}. In year $4, C_{44}>C_{42}$, so that x^{4} d.r.p.t. x^{2}.

Therefore, the person's behaviour reveals no violations of WARP or of SARP. The data could represent the choices of a consumer with consistent, well-behaved preferences.

Q3. An expected utility maximizer has utility-of-wealth function

$$
U(W)=200-\frac{1}{W}
$$

Calculate this person's risk premium for a gamble which offers a wealth of $2 X$ with probability 0.5 , and of a wealth of (0.5) X with probability 0.5 , where X is some positive number.
$A 3$. To calculate the risk premium for a gamble, first the certainty equivalent to the gamble must be calculated. For any gamble g, calculate the expected utility of the gamble :
the certainty equivalent is the certain amount of wealth $C E$ which offers the same expected utility. That is, if $g=\left(p_{1} \circ W_{1}, p_{2} \circ W_{2}\right)$ then $C E$ is the solution to

$$
\begin{equation*}
U(C E)=p_{1} U\left(W_{1}\right)+p_{2} U\left(W_{2}\right) \tag{3-1}
\end{equation*}
$$

Here, $(3-1)$ becomes

$$
\begin{equation*}
200-\frac{1}{C E}=(0.5)\left(200-\frac{1}{2 X}\right)+(0.5)\left(200-\frac{1}{(0.5) X}\right) \tag{3-2}
\end{equation*}
$$

Equation (3-2) simplifies to

$$
\begin{equation*}
\frac{1}{C E}=\frac{1}{2} \frac{1}{2 X}+\frac{1}{2} \frac{2}{X} \tag{3-3}
\end{equation*}
$$

or

$$
\begin{equation*}
C E=\frac{4}{5} X \tag{3-4}
\end{equation*}
$$

The risk premium for the gamble is the difference between the expected value $E g=$ $p_{1} W_{1}+p_{2} W_{2}$ of the gamble, and the certainty equivalent to the gamble. Here

$$
\begin{equation*}
E g=(0.5)(2 X)+(0.5)((0.5) X)=\frac{5}{4} X \tag{3-5}
\end{equation*}
$$

so that the risk premium equals

$$
\begin{equation*}
E g-C E=\left(\frac{5}{4}-\frac{4}{5}\right) X=\frac{9}{20} X \tag{3-6}
\end{equation*}
$$

Q4. What is the cost function $C(\mathbf{w}, y)$ for a firm for which the production function is

$$
f\left(x_{1}, x_{2}\right)=\ln \left(x_{1}+1\right)+x_{2}
$$

where x_{i} is the quantity employed of input i ?

A4. The cost function is the cost of the input bundle $\left(x_{1}(\mathbf{w}, y), x_{2}(\mathbf{w}, y)\right)$ which minimizes the cost $w_{1} x_{1}+w_{2} x_{2}$ subject to the constraint that $f\left(x_{1}, x_{2}\right)=y$.

The first-order conditions for the above minimization problem are

$$
\begin{equation*}
\mu \frac{\partial f\left(x_{1}, x_{2}\right)}{\partial x_{i}}=w_{i} \quad i=1,2 \tag{4-1}
\end{equation*}
$$

where μ is the Lagrange multiplier on the constraint $f\left(x_{1}, x_{2}\right)=y$. For the given production function, the partial derivatives are $f_{1}=\frac{1}{x_{1}+1}$ and $f_{2}=1$ so that $(4-1)$ becomes

$$
\begin{gather*}
\frac{\mu}{x_{1}+1}=w_{1} \tag{4-2}\\
\mu=w_{2} \tag{4-3}
\end{gather*}
$$

Substituting from (4-3) into (4-2),

$$
\begin{equation*}
\frac{w_{1}}{x_{1}+1}=w_{2} \tag{4-4}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{1}(\mathbf{w}, y)=\frac{w_{2}}{w_{1}}-1 \tag{4-5}
\end{equation*}
$$

which is the conditional input demand for input 1 . Since $\ln \left(x_{1}+1\right)+x_{2}=y$, therefore

$$
\begin{equation*}
x_{2}=y-\ln \left(x_{1}+1\right) \tag{4-6}
\end{equation*}
$$

implying a conditional demand function for input 2 of

$$
\begin{equation*}
x_{2}(\mathbf{w}, y)=y-\ln \left(\frac{w_{2}}{w_{1}}\right)=y-\ln w_{2}+\ln w_{1} \tag{4-7}
\end{equation*}
$$

Since the cost function $C(\mathbf{w}, y)$ is the cost of the inputs,

$$
C(\mathbf{w}, y)=w_{1} x_{1}(\mathbf{w}, y)+w_{2} x_{2}(\mathbf{w}, y)=w_{2}-w_{1}+w_{2} y-w_{2} \ln w_{2}+w_{2} \ln w_{1}
$$

The right-side expression in equation $(4-8)$ is the firm's cost function : partial differentiation of $w_{1}-w_{2}+w_{2} y-w_{2} \ln w_{2}-w_{2} \ln w_{1}$ with respect to w_{1} and w_{2} yields the right sides of equations $(4-5)$ and $(4-7)$ respectively, confirming Shephard's Lemma.

However, expression $(4-5)$ makes sense only if $w_{2} \geq w_{1}$. If $w_{2}<w_{1}$,
then $M P_{1} / M P_{2}<w_{1} / w_{2}$, even if $x_{1}=0$. In this case, the firm uses only input 2 . So if $w_{1}>w_{2}$, then

$$
\begin{align*}
& x_{1}(\mathbf{w}, y)=0 \tag{4-9}\\
& x_{2}(\mathbf{w}, y)=y \tag{4-10}
\end{align*}
$$

and

$$
\begin{equation*}
C(\mathbf{w}, y)=w_{2} y \tag{4-11}
\end{equation*}
$$

