## YORK UNIVERSITY <br> Faculty of Graduate Studies

Final Examination December 14, 2010

## Economics 5010 AF3.0 : Applied Microeconomics S. Bucovetsky <br> time $=2.5$ hours

Do any 6 of the following 10 questions. All count equally.

1. If a person's preferences can be represented by the utility function

$$
u\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+100-\frac{1}{x_{2}}+\ln x_{3}
$$

find the person's Marshallian demand functions for each good, her indirect utility function, her Hicksian demand functions, and her expenditure function.
2. Person A is a risk-averse expected utility maximizer, with utility-of-wealth function $u(W)$. Person B is also an expected utility maximizer, with utility-of-wealth function $V(W)=f[u(W)]$ where $f(\cdot)$ is an increasing concave function, and where $u(\cdot)$ is person A's utility-of-wealth function

Show that person B has a higher risk premium for any risky gamble than person A.
3. What is a firm's cost function, if its production function is

$$
y=\left(\sqrt{x_{1}}+\sqrt{x_{2}}\right)^{3}
$$

where $y$ is the quantity of output, and $x_{1}$ and $x_{2}$ are the quantities used of two inputs?

## continued

4. What is the equation of the long-run industry supply curve of a perfectly competitive industry in which there are a large number of identical firms, each of which has the same total cost function

$$
T C(y)=2 y^{3}-48 y^{2}+388 y
$$

where $T C(y)$ is the total cost of producing $y$ units of output?
5. How does the equilibrium price vary with the number of firms $n$, in the following $n$-firm model of oligopoly?

Firms produce an identical good. Each firm has the same constant-returns-to-scale technology, so that the total cost of producing $y$ units of the good is $c y$ for any firm. Firms choose their prices simultaneously and non-cooperatively, and buyers buy from the lowest-cost firm. (If 2 or more firms are tied with the lowest price, they split the market evenly.)
6. What are all the Pareto efficient allocations in the following 3-person exchange economy?

There are 2 goods : the aggregate endowment of good 1 is 30 units, and the aggregate endowment of good 2 is 40 units.

Person 1's preferences can be represented by the utility function $U^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=x_{1}^{1}+x_{2}^{1}$.
Person 2's preferences can be represented by the utility function $U^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=x_{1}^{2} x_{2}^{2}$.
Person 3's preferences can be represented by the utility function
$U^{3}\left(x_{1}^{3}, x_{2}^{3}\right)=\min \left(x_{1}^{3}, x_{2}^{3}\right)$.
7. Prove (both)
(i) that every Walrasian (competitive) equilibrium allocation is in the core
(ii) that every allocation in the core is Pareto optimal

## continued

8. What are all the Nash equilibria (in pure and mixed strategies) to the following game in strategic form?

|  | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| I | $(4,2)$ | $(3,1)$ | $(2,0)$ | $(2,0)$ |
| II | $(2,3)$ | $(0,0)$ | $(2,3)$ | $(1,2)$ |
| III | $(0,2)$ | $(4,1)$ | $(0,1)$ | $(2,4)$ |
| IV | $(0,4)$ | $(10,2)$ | $(0,2)$ | $(1,1)$ |

9. If there are three bidders in an auction, and each bidder's private value of the object being auctioned is an independent draw from the set of values $\{1,2,3\}$, with each of the 3 values equally likely,
$i$ What is the expected revenue from an auction which allocates the object efficiently?
ii Design an auction which has a higher expected revenue than the efficient auction.

## continued

10. What is the sub-game perfect Nash equilibrium to the following game?

There are two players in the game. Firm 1 is a prospective entrant, and firm 2 is an incumbent firm, which already has stores in two markets.

Firm 1 moves first, choosing whether to enter market A, or not to enter.
Firm 2 observes firm 1's first move. If firm 1 chose not to enter, firm 2 has no move to make. But if firm 1 chose (in the initial stage) to enter, then firm 2 chooses whether to accommodate entry or to start a price war in market A.

Firm 1 then chooses whether to enter market B. Firm 1 makes this choice immediately after choosing not to enter market A (if it chose not to enter in the first stage), or makes this choice after observing firm 2's move (if it had chosen to enter in the first stage).

If firm 1 chooses not to enter market $B$, the game ends. But if firm 1 chooses to enter market B , then firm 2 has a second move, whether to accommodate entry in market B , or to start a price war there. Then the game ends.

The firms' payoffs are the sum of their profits in the two markets.
Firm 1 gets profits of 0 in a market it does not enter, profits of 5 in a market which it entered and in which firm 2 accommodated its entry, and -2 in a market which it entered and in which firm 2 started a price war.

Firm 2 gets profits of 10 in a market in which firm 1 did not enter, profits of 5 in a market in which firm 1 entered and in which it (firm 2) accommodated entry, and profits of -2 in a market in which firm 1 entered and in which it (firm 2) started a price war.

