
YORK UNIVERSITY Faculty of Graduate Studies

Final Examination December 14, 2010

Economics 5010 AF3.0 : Applied Microeconomics S. Bucovetsky

time=2.5 hours

Do any 6 of the following 10 questions. All count equally.

Q1. If a person’s preferences can be represented by the utility function

u(x1, x2, x3) = x1 + 100− 1

x2
+ lnx3

find the person’s Marshallian demand functions for each good, her indirect utility function,

her Hicksian demand functions, and her expenditure function.

A1. Start with the Marshallian demand functions, which are the solutions to the

“standard” consumer optimization problem, of maximizing u(x) subject to the constraint

that p · x ≤ y. The first–order conditions for this maximization are

u1 = 1 = λp1 (1− 1)

u2 =
1

(x2)2
= λp2

u3 =
1

x3
= λp3 (1− 4)

(where λ is the Lagrange multiplier on the budget constraint), as well as the budget

constraint

p1x1 + p2x2 + p3x3 = y (1− 4)

The quasi–linearity of the utility function means that the Marshallian demand functions

for goods 2 and 3 can be derived without even using the budget constraint : since (1− 1)

implies that λ = 1/p1, (1− 2) and (1− 3) can be written

x2 =

√
p1
p2

(1− 5)
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x3 =
p1
p3

(1− 6)

which are the Marshallian demand functions for goods 2 and 3. Substituting from (1− 5)

and (1− 6) into the budget constraint,

xM1 =
y − p2x2 − p3x3

p1
=

y

p1
−

√
p2
p1
− 1 (1− 7)

is the Marshallian demand for good 1 (provided that income is high enough that y >

√
p1p2 + p1, which ensures that x1 > 0).

Substituting from (1−5)–(1−7) into the utility function, the indirect utility function

is

v(p, y) =
y

p1
−
√
p2
p1
−1+100−

√
p2
p1

+ln p1−ln p3 =
y

p1
−2

√
p2
p1

+99+ln p1−ln p3 (1− 8)

To find the Hicksian demands, minimization of p·x subject to x1+100− 1
x2

+lnx3 ≥ u,

yields first–order conditions

p1 = µu1 = µ (1− 9)

p2 = µu2 = µ
1

(x2)2
(1− 10)

p3 = µu3 = µ
1

x3
(1− 11)

(where µ is the Lagrange multiplier on the utility constraint) as well as the utility constraint

x1 + 100− 1

x2
+ lnx3 = u (1− 12)

Again, quasi–linearity helps a lot : substituting µ = p1 from (1 − 9) into (1 − 10) and

(1− 11) yields the Hicksian demand functions for goods 2 and 3,

x2 =

√
p1
p2

(1− 13)

x3 =
p1
p3

(1− 14)
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which are the same as the Marshallian demand functions (as the Slutsky equation requires).

The Hicksian demand function can be obtained from substitution of (1− 13) and (1− 14)

into the utility constraint (1− 12),

xH1 = u− 100 +
1

x2
− lnx3 = u− 100 +

√
p2
p1
− ln p1 + ln p3 (1− 15)

Then the expenditure function is

e(p, u) = p1x
H
1 +p2x

H
2 +p3x

H
3 = p1u−100p1+

√
p2p1−p1 ln p1+p1 ln p3+

√
p1p2+p1 = p1u−99p1−p1 ln p1+p1 ln p3+2

√
p1p2

(1− 16)

[Alternatively, the expenditure function (1 − 16) can be obtained from the duality

relation v(p, e(p, u)) = u and the indirect utility function (1 − 8), and then the Hicksian

demand functions obtained from differentiation of (1− 16) with respect to the prices.]

Q2. Person A is a risk–averse expected utility maximizer, with utility–of–wealth

function u(W ). Person B is also an expected utility maximizer, with utility–of–wealth

function V (W ) = f [u(W )] where f(·) is an increasing concave function, and where u(·) is

person A’s utility–of–wealth function.

Show that person B has a higher risk premium for any risky gamble than person A.

A2. A couple of ways of doing this :

(i) Person B having a higher risk premium for any risky gamble than person A is

equivalent to person B having a higher coefficient of risk aversion than person A.

Person A’s coefficient of relative risk aversion is

RAR ≡ −
u′′(W )W

u′(W )

Person B’s coefficient of relative risk aversion is

RBR = −U
′′(W )W

U ′(W )
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But the chain rule implies that

U ′(W ) = f ′[u(W )]u′(W ) (2− 1)

so that

U ′′(W ) = f ′′[u(W )][u′(W )]2 + f ′[u(W )]u′′(W ) (2− 2)

meaning that

RBR = −f
′′[u(W )]u′(W )W

f ′[u(W )]
− u′′(W )W

u′(W )
= −f

′′u′W

f ′
+RAR (2− 3)

Since f ′′ < 0 and f ′ > 0, equation (2− 3) implies that person B has a higher coefficient of

relative risk aversion than person A.

(ii) Alternatively, the certainty equivalent to some gamble for person A is defined by

E[u(W )] = u(CEA) (2− 4)

Now if the function f(·) is concave, then

f(E[u(W )]) ≥ E[f(u(W )] (2− 5)

for any gamble (which is not a sure thing)∗ so that

E[U(W )] ≡ E[f(u(W ))] ≤ f(E[u(W )]) = f [u(CEA)] = U(CEA) (2− 6)

Since equation (2 − 6) says that U(CEA) ≥ E[U(W )], therefore, person B’s certainty

equivalent CEB to the gamble must be no greater than CEA.

And if person B always has a lower certainty equivalent to any gamble (than person

A), then he must have a higher risk premium.

∗ Why? The definition of concavity says that f(tx+(1−t)y) > tf(x)+(1−t)f(y) if f(·)

is concave. That means that f(
∑
πiWi) ≥

∑
πif(Wi) for any probabilities (π1, . . . , πn) of

n events.
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Q3. What is a firm’s cost function, if its production function is

y = (
√
x1 +

√
x2)3

where y is the quantity of output, and x1 and x2 are the quantities used of two inputs?

A3. This is an example of a CES production function,

f(x1, x2) = (xρ1 + xρ2)µ/ρ

with ρ = 0.5 and µ = 1.5, so that it’s a slight modification [to the case in which µ > 1] of

example 3.3 (pp. 128–129) in Jehle and Reny.

Minimization of w1x1 +w2x2 subject to the constraint f(x1, x2) = (
√
x1 +

√
x2)3 ≥ y

implies first–order conditions

w1 = µ
3

2
(
√
x1 +

√
x2)2[x1]−0.5 (3− 1)

w2 = µ
3

2
(
√
x1 +

√
x2)2[x2]−0.5 (3− 2)

where µ is the Lagrange multiplier on the constraint. So (3− 1) and (3− 2) imply that

x2 = [
w1

w2
]2x1 (3− 3)

Substituting for x2 from (3− 3) into the constraint,

y = (
√
x1 +

w1

w2

√
x1)3 = [

w1 + w2

w2
]3x

3/2
1 (3− 4)

which is the conditional input demand for input 1, since it can be re–written

x1 = [
w2

w1 + w2
]2y2/3 (3− 5)

Substituting back into (3− 3), then

x2 = [
w1

w1 + w2
]2y2/3 (3− 6)
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is the conditional demand for input 2. Therefore, the cost function is

w1x1 + w2x2 = w1[
w2

w1 + w2
]2y2/3 + w2[

w1

w1 + w2
]2y2/3

or

C(w1, w2, y) =
w1w2

w1 + w2
y2/3 (3− 7)

Q4. What is the equation of the long–run industry supply curve of a perfectly com-

petitive industry in which there are a large number of identical firms, each of which has

the same total cost function

TC(y) = 2y3 − 48y2 + 388y

where TC(y) is the total cost of producing y units of output?

A4. The key here is that the firms are identical, and that there are a lot of them. In

long–run equilibrium, each firm must break even (otherwise there would be entry or exit).

Breaking even means each firm’s price must equal its average costs (that’s the defini-

tion of zero profits). Since each firm also chooses to maximize profits by finding an output

level at which p = MC, it must be the case that MC = AC in any long–run equilibrium.

Since the average cost function associated with the total cost function TC(y) = 2y3−

48y2 + 388y is U–shaped, there is a unique output level for each firm at which MC = AC.

The problem is then to find the output level y∗ for which MC = AC, and the level

of MC = AC when y = y∗. The industry long–run supply curve is a horizontal line, at a

height of AC(y∗).

When TC(y) = 2y3 − 48y2 + 388y, then

AC(y) ≡ TC(y)/y = 2y2 − 48y + 388 (4− 1)

so that

AC ′(y) = 4y − 48 (4− 2)
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(so that the average cost curve is indeed U–shaped) implying that AC(y) is minimized at

the y∗ for which 4y∗ − 48 = 0, or

y∗ = 12

Evaluating the average cost at y = 12,

AC(y∗) = 2(122)− 48(12) + 388 = 100 (4− 3)

so that the industry long–run supply curve is a horizontal line, at a price of 100.

Q5. How does the equilibrium price vary with the number of firms n, in the following

n–firm model of oligopoly?

Firms produce an identical good. Each firm has the same constant–returns–to–scale

technology, so that the total cost of producing y units of the good is cy for any firm.

Firms choose their prices simultaneously and non–cooperatively, and buyers buy from the

lowest–cost firm. (If 2 or more firms are tied with the lowest price, they split the market

evenly.)

A5. Short and (I hope) sweet). It’s a Bertrand model (“Firms choose their prices

simultaneously and non–cooperatively”) with identical, constant marginal costs.

So the unique equilibrium to the n–firm Bertrand game is for price to be driven down

to marginal cost c. The equilibrium price does not vary with the number of firms in the

industry (as long as there are at least 2 of them).

Q6. What are all the Pareto efficient allocations in the following 3–person exchange

economy?

There are 2 goods : the aggregate endowment of good 1 is 30 units, and the aggregate

endowment of good 2 is 40 units.

Person 1’s preferences can be represented by the utility function U1(x11, x
1
2) = x11 +x12.

Person 2’s preferences can be represented by the utility function U2(x21, x
2
2) = x21x

2
2.
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Person 3’s preferences can be represented by the utility function

U3(x31, x
3
2) = min (x31, x

3
2).

A6. Consider first “interior” allocations, that is allocations in which each person’s

consumption of each good is positive. For such an allocation, the condition for Pareto

efficiency is that the MRS between the 2 goods be the same for all three people. Since

person 1 regards the 2 goods as perfect substitutes, her MRS is 1, regardless of how much

she consumes of either good. Therefore, in any interior Pareto optimum, the MRS of all

3 people must equal 1. That means (naturally) that person 3 consumes equal quantities

of both goods : when x31 = x32, MRS3 is undefined, but only at these “kinks” in her

indifference curve could her MRS be between 0 and ∞. For person 2 to have an MRS of

1, it must be the case that x21 = x22, since MRS2 = x22/x
2
1.

So the Pareto efficient “interior” allocations are those for which x21 = x22 > 0, x31 =

x33 > 0 and x21 + x31 < 30.

What about “corner” solutions, in which some person’s consumption of some good is

zero? Since person #3 regards the two goods as strict complements, it must be the case

that x31 = x32 in any Pareto efficient allocation. (If x31 > x32, for example, reallocating the

excess of good 1 to person #1 would make person #1 better off without making person #

any worse off.)

It also can’t be efficient to have x21 > x22. If this were true, then it would have to be

true that person #1 was consuming some of good 2. (There is more of good 2 in aggregate

than thee is of good 1, and person #3 never consumes any of the extra good 2.) And

then having person #2 trade some of his good 1 to person 2 for some of good 2 would be

Pareto–improving.

However, if may be efficient to have x22 > x21, so long as x11 = 0.) Any allocation in

which x22 > x21, and x11 = 0 will be Pareto efficient, provided that x31 = x32 (and provided

that x11 + x21 + x31 = 30 and x12 + x22 + x32 = 40).[For example, x11 = 0, x12 = 6, x21 = 10, x22 =
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14, x31 = 20, x32 = 20 is efficient.]

In summary, the Pareto efficient allocations are those for which either

i x21 = x22 > 0, x31 = x33 > 0 and x21 + x31 < 30

or

ii x11 = 0, x22 ≥ x21, x31 = x32

Q7. Prove (both)

(i) that every Walrasian (competitive) equilibrium allocation is in the core

(ii) that every allocation in the core is Pareto optimal

A7 The first part is Theorem 5.6 in Jehle and Reny.

It must be shown that if x as a competitive equilibrium allocation, then it cannot be

blocked by any coalition S.

So let p be a vector of equilibrium prices, and x the associated competitive equilibrium

allocation.

For every person i, her consumption bundle xi is the one she chooses, when prices

are p, and when she has income equal to the value of her endowment p · ei. Since her

consumption bundle is on her budget line, it must be true that

p · xi = p · ei (7− 1)

She prefers xi to any other consumption bundle in her budget set. Therefore, if there is

some other bundle yi which she prefers (weakly) to xi, then it must be the case that yi

costs more than xi at prices p, if she prefers yi weakly to xi :

p · yi > p · xi (7− 2)

(whenever i prefers yi weakly to xi).

So suppose that some coalition S tries to block the competitive equilibrium allocation

x with some other allocation y. Since each member i of S must like yi at least as much
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as xi, and at least one member must prefer yi strictly, equations (7− 1) and (7− 2) imply

that p · yi ≥ p · ei for each member of the coalition, with the inequality strict for at least

one member. Adding up over all members of the potential blocking coalition S,

∑
i∈S

p · yi >
∑
i∈S

p · ei (7− 3)

But the proposed allocation for the coalition S must be feasible in order for S to block x

with y : the allocation must come from the endowments of the members of S, so that

∑
i∈S

yij ≤
∑
i∈S

eij (7− 4)

for each good j.

Since each price pj is non–negative, equations (7− 3) and (7− 4) cannot both hold.

Therefore, it is impossible for any coalition S to block the competitive equilibrium alloca-

tion x, so that x is in the core.

The second part of the question is a simple observation from the definition of the

core (see the second paragraph after the definition of “blocking coalitions” on page 186 in

Jehle and Reny). If an allocation is in the core, then it cannot be blocked by the “grand

coalition” consisting of all people in the economy. So if an allocation is in the core, there

is no other feasible allocation which is preferred weakly by all people in the economy, and

strictly by at least one person. So any core allocation must be Pareto optimal.

Q8. What are all the Nash equilibria (in pure and mixed strategies) to the following

game in strategic form?

a b c d

I (4, 2) (3, 1) (2, 0) (2, 0)
II (2, 3) (0, 0) (2, 3) (1, 2)
III (0, 2) (4, 1) (0, 1) (2, 4)
IV (0, 4) (10, 2) (0, 2) (1, 1)
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A8. There are several strategies which can be removed using iterated elimination of

weakly dominated strategies. This removal is useful in trying to find any mixed–strategy :

a weakly dominated strategy (or a strategy which is weakly dominated once other weakly

dominated strategies have been eliminated) cannot be played with positive probability in

a purely mixed strategy.

Column b is a strictly dominated (by column a) strategy for player 2. Column c is

weakly dominated by column a, for player 2, as well. Row II is weakly dominated by row

I for player 1. And with b and c eliminated, rows III and IV are both weakly dominated

by row I for player I.

So that leaves only row I as undominated for player 1. And column a is player 2’s

best response to I.

So the game can be solved by iterated elimination of weakly dominated strategies.

And (I, a) is the pair of pure strategies in that solution.

But (I, a) is not the only Nash equilibrium in pure strategies. Both (II, c) and (III, d)

are also Nash equilibria (even though they require players to play weakly dominated strate-

gies).

Those are the three Nash equilibria in pure strategies : (I, a), (II, c) and (III, d).

And there are no other equilibria, since neither player will ever put positive weight on

a weakly dominated strategy in a mixed–strategy Nash equilibrium.

Q9. If there are three bidders in an auction, and each bidder’s private value of the

object being auctioned is an independent draw from the set of values {1, 2, 3}, with each

of the 3 values equally likely,

i What is the expected revenue from an auction which allocates the object efficiently?

ii Design an auction which has a higher expected revenue than the efficient auction.

A9. The easiest efficient auction to use here is probably the second–price sealed–bid

auction (or equivalently, the English ascending–bid oral auction), since bidders have a
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dominant strategy in this auction, to bid their true private values.

If each bidder bids her value, then the expected revenue from this auction is the

expected value of the second–highest of the three bids.

With 3 bidders, and 3 possible values for each bidder, there are 33 = 27 possible

outcomes. The second highest bid is 3 in 7 of those outcomes

((3, 3, 3), (3, 3, 2), (3, 3, 1), (3, 1, 3), (3, 2, 3), (1, 3, 3), (2, 3, 3)), and it is 1 in another 7 of the

outcomes ((1, 1, 1), (1, 1, 3), (1, 1, 2), (1, 3, 1), (1, 2, 1), (3, 1, 1), (2, 1, 1)). In the remaining 13

outcomes, the second–highest bid is 2. So the expected value of the second–highest bid is

(7/27)(3) + (7/27)(1) + (13/27)(2) = 2.

But with independent private values, every efficient auction has the same expected

revenue, so that 2 is the expected revenue from any efficient auction here.

If the auctioneer put in a reserve price of 1.5, then the reserve bid would not be met

if all 3 bidders valued the object at 1. There’s a 1/27 chance of that happening. If the

second–highest value is 1, but the highest value is 2 or 3, then the presence of the reserve

bid raises the price from 1 (the second–highest bid) to 1.5 (the reserve bid). There’s a

6/27 chance of that happening. If the second–highest bid is 2 or 3, then a reserve bid of

1.5 has no effect on the revenue.

So requiring a reserve bid of 1.5 raises the expected revenue by (6/27)(0.5)− (1/27) =

2/27, compared to the expected revenue from an efficient auction. That’s not the only way

of raising more revenue than an efficient auction : any reserve bid between 1.1666 and 2

will raise revenue, for example. So would a reserve bid between 2.6667 and 3.

Q10. What is the sub–game perfect Nash equilibrium to the following game?

There are two players in the game. Firm 1 is a prospective entrant, and firm 2 is an

incumbent firm, which already has stores in two markets.

Firm 1 moves first, choosing whether to enter market A, or not to enter.

Firm 2 observes firm 1’s first move. If firm 1 chose not to enter, firm 2 has no move
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to make. But if firm 1 chose (in the initial stage) to enter, then firm 2 chooses whether to

accommodate entry or to start a price war in market A.

Firm 1 then chooses whether to enter market B. Firm 1 makes this choice immediately

after choosing not to enter market A (if it chose not to enter in the first stage), or makes

this choice after observing firm 2’s move (if it had chosen to enter in the first stage).

If firm 1 chooses not to enter market B, the game ends. But if firm 1 chooses to enter

market B, then firm 2 has a second move, whether to accommodate entry in market B, or

to start a price war there. Then the game ends.

The firms’ payoffs are the sum of their profits in the two markets.

Firm 1 gets profits of 0 in a market it does not enter, profits of 5 in a market which it

entered and in which firm 2 accommodated its entry, and −2 in a market which it entered

and in which firm 2 started a price war.

Firm 2 gets profits of 10 in a market in which firm 1 did not enter, profits of 5 in a

market in which firm 1 entered and in which it (firm 2) accommodated entry, and profits

of −2 in a market in which firm 1 entered and in which it (firm 2) started a price war.

A10. The accompanying figure depicts the extensive form of this game.

The subgame perfect Nash equilibrium can be found by backwards induction (starting

from the end of the game).

First note that if firm 1 chose to enter market B, then firm 2 will choose to accom-

modate with his last move. The three nodes in the figure at which firm 2 gets to respond

to entry by firm 1 into market B give payoffs of 15, 10 or 3 from accommodation, and 8, 3

and −4 (respectively) from starting a price war, so that accommodation is always better.

(That is, better to get $5 in market B than –$2.)

Moving up the tree, it then turns out that entry into market B is always best for

firm 1, in the three nodes at which she makes this choice. Given firm 1’s subsequent best

replies, her payoffs are 5, 10 and 3 from entry, and 0, 5 and −2 (respectively) from not
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entering market B. So she should enter market B, whatever has happened earlier in the

game.

Now firm 2’s choice of whether to accommodate or not (if firm 1 has entered market

A) i to accommodate. Given the subsequent best replies, firm 2 gets a payoff of 10 if it

accommodates entry in market A [if firm 1 chose to enter it initially], and 3 if it starts a

price war.

Finally, at the initial decision node, firm 1 will get a payoff of 5 if it chooses not to

enter, and 10 if it enters, given the subsequent actions by both firms, so it should choose

to enter market A.

Therefore, the subgame perfect Nash equilibrium strategies are : firm 1 should enter

each market whenever it gets the choice, and firm 2 should accommodate entry in every

market, whenever it gets the choice.

Here a price war in market A is not a credible threat, since firm 1 can see that entry

into market B will be accommodated, no matter what has happened in market A. Since

market A’s outcome has no impact on what will happen in market B, any threat by firm

2 to start a price war in market A is not credible.
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