GS/ECON 5010 APPLIED MICROECONOMICS

Answers to Midterm Exam October 2010

Q1. List (without proof) 5 properties of the indirect utility function of a consumer with well-behaved preferences.

A1. The text (pg. 28) lists 6 properties. Any 5 of them will do.
They are

1. the indirect utility function is continuous in prices and income
2. the indirect utility function is homogeneous of degree 0 in prices and income together : $v(a \mathbf{p}, a y)=v(\mathbf{p}, y)$ for any positive constant a
3. the indirect utility function is strictly increasing in income y (increasing y must shift out the budget line)
4. the indirect utility function is decreasing in prices (increasing p_{i} cannot increase utility, and must decrease it strictly if $x_{i}^{M}>0$)
5. it's quasiconvex : if $v(\mathbf{p}, y)=v\left(\mathbf{p}^{\prime}, y^{\prime}\right)$, then $v\left(\mathbf{p}^{\prime \prime}, y^{\prime \prime}\right) \leq v(\mathbf{p}, y)=v\left(\mathbf{p}^{\prime}, y^{\prime}\right)$ if $\mathbf{p}^{\prime \prime}=$ $t \mathbf{p}+(1-t) \mathbf{p}^{\prime}$ and $y^{\prime \prime}=t y+(1-t) y$, for any $0 \leq t \leq 1$.
6. Roy's identity :

$$
x_{i}^{M}(\mathbf{p}, y)=-\frac{\partial v(\mathbf{p}, y) / \partial p_{i}}{\partial v(\mathbf{p}, y) / \partial y}
$$

for any good i

Q2. What are a person's Hicksian (compensated) demand functions, and her expenditure function, if her direct utility function is

$$
u\left(x_{1}, x_{2}\right)=x_{1}+\ln x_{2} \quad ?
$$

A2. Solving directly from the expenditure minimization ("dual") problem, the consumer chooses x_{1} and x_{2} so as to minimimize $p_{1} x_{1}+p_{2} x_{2}$ subject to the constraint $u\left(x_{1}, x_{2}\right)=u$. Here that minimization problem has a Lagrangean function

$$
\mathcal{L}=p_{1} x_{1}+p_{2} x_{2}-\mu\left(x_{1}+\ln x_{2}-u\right)
$$

with first-order conditions

$$
\begin{align*}
p_{1} & =\mu \tag{2-1}\\
p_{2} & =\frac{\mu}{x_{2}} \tag{2-2}
\end{align*}
$$

Substituting for μ from (2-1) into (2-2) yields

$$
p_{2}=\frac{p_{1}}{x_{2}}
$$

or

$$
\begin{equation*}
x_{2}=\frac{p_{1}}{p_{2}} \tag{2-3}
\end{equation*}
$$

which is the Hicksian demand function for good 2.
Substituting for x_{2} from $(2-3)$ into the utility constraint $x_{1}+\ln x_{2}=u$ yields

$$
x_{1}+\ln p_{1} / p_{2}=x_{1}+\ln p_{1}-\ln p_{2}=u
$$

or

$$
\begin{equation*}
x_{1}=u-\ln p_{1}+\ln p_{2} \tag{2-4}
\end{equation*}
$$

which is the Hicksian demand function for good 1.
Since

$$
e\left(p_{1}, p_{2}, u\right)=p_{1} x_{1}^{H}\left(p_{1}, p_{2}, y\right)+p_{2} x_{2}^{H}\left(p_{1}, p_{2}, y\right)
$$

here

$$
\begin{equation*}
e\left(p_{1}, p_{2}, y\right)=p_{1} u-p_{1} \ln p_{1}+p_{1} \ln p_{2}+p_{1} \tag{2-5}
\end{equation*}
$$

Differentiating $(2-5)$ with respect to p_{1} and p_{2} yields $(2-4)$ and $(2-3)$ respectively, so that Shephard's Lemma holds.
[The expenditure function can also be obtained using the "primal" problem. Maximizing utility subject to the budget constraint implies first-order conditions

$$
\begin{gathered}
1=\lambda p_{1} \\
\frac{1}{x_{2}}=\lambda p_{2}
\end{gathered}
$$

so that the Marshallian demand function for good 2 is

$$
\begin{equation*}
x_{2}^{M}\left(p_{1}, p_{2}, y\right)=\frac{p_{1}}{p_{2}} \tag{2-6}
\end{equation*}
$$

which is the same as the Hicksian demand function, since we have quasi-linear preferences here. Substituting from $(2-6)$ into the budget constraint yields the Marshallian demand function for good 1 ,

$$
\begin{equation*}
x_{1}^{M}\left(p_{1}, p_{2}, y\right)=\frac{y}{p_{1}}-1 \tag{2-7}
\end{equation*}
$$

Substituting from $(2-6)$ and $(2-7)$ into the direct utility function, so that $v\left(p_{1}, p_{2}, y\right)=$ $u\left[x_{1}^{M}\left(p_{1}, p_{2}, y\right), x_{2}^{M}\left(p_{1}, p_{2}, y\right)\right]$ implies that the indirect utility function here is

$$
\begin{equation*}
v\left(p_{1}, p_{2}, y\right)=\frac{y}{p_{1}}-1+\ln p_{1}-\ln p_{2} \tag{2-8}
\end{equation*}
$$

The duality relation

$$
v\left(p_{1}, p_{2}, e\left(p_{1}, p_{2}, u\right)\right)=u
$$

and equation $(2-8)$ then imply that

$$
\begin{equation*}
u=\frac{e\left(p_{1}, p_{2}, u\right)}{p_{1}}-1+\ln p_{1}-\ln p_{2} \tag{2-9}
\end{equation*}
$$

Equation $(2-9)$ can be re-arranged into expression $(2-5)$ for the expenditure function, and Shephard's Lemma then used to get the Hicksian demand functions $(2-4)$ and $(2-3)$.]

Q3. A risk-averse expected utility maximizer has a utility-of-wealth function

$$
u(W)=\ln W
$$

She has initial wealth of $\$ 1,000,000$, half of which is invested in a house. There is a probability of 10 percent that her house will burn down this year and be destroyed totally, reducing her wealth to $\$ 500,000$.

But she can buy insurance on her house. A firm is willing to sell her I dollars worth of insurance on the house, at an annual price of $q I$, where $q \geq 0.1$. [So she would collect I dollars from the insurance company if her house burned down, if she purchased a policy.]

She is free to choose to buy as much (or as little) insurance as she wishes.
How much insurance should she buy?

A3. If the person purchases I dollars worth of insurance, then her wealth will be $1,000,000-q I$ in the "good" state of the world, in which her house does not burn down ; she must pay a price of q per dollar of insurance coverage chosen, so that $q I$ is the total cost of her incurance.

In this case, in the "bad" state of the world she still has to pay $q I$ for her insurance, but now she collects I dollars to partially compensate for the loss of the $\$ 500,000$ house. So in the bad state her wealth will be

$$
500,000+I-q I
$$

if she purchases I dollars of insurance.
Her expected utility is $(0.9) u\left(W_{g}\right)+(0.1) u\left(W_{b}\right)$, where W_{g} and W_{b} are her wealth in the good and bad states of the world. Here,

$$
\begin{equation*}
E U=(0.9) \ln (1,000,000-q I)+(0.1) \ln (500,000+I-q I) \tag{3-1}
\end{equation*}
$$

She should choose her insurance coverage I so as to maximize her expected utility defined by $(3-1)$. Setting the derivative of $(3-1)$ with respect to I equal to 0 yields the first-order condition

$$
\begin{equation*}
(0.1) \frac{1-q}{500,000+(1-q) I}-(0.9) \frac{q}{1,000,000-q I}=0 \tag{3-2}
\end{equation*}
$$

Equation (3-2) can be written

$$
\begin{equation*}
9 q[500,000+(1-q) I]=(1-q)[1,000,000-q I] \tag{3-3}
\end{equation*}
$$

or

$$
\begin{equation*}
I=\frac{(2-11 q)}{q(1-q)} 50,000 \tag{3-4}
\end{equation*}
$$

which is the amount of coverage she should buy.
Note that if the insurance is actuarially fair, then $q=0.1$: in this case the expected payout from the policy (0.1)I equals the premium paid, $q I$. When $q=0.1$, equation $(3-4)$ says that the person buys full coverage, $\$ 500,000$, so that $W_{b}=500,00+(1-q) I=950,000=W_{g}$.

If insurance is really expensive $(q>0.1819)$, then the right side of equation $(3-4)$ is negative. Even though the person is risk averse, she will choose not to buy any insurance if insurance is too expensive ; going without insurance increases her expected wealth, so that she is willing to take that bet if the insurance is priced too high.

When $q<0.1819$, differentiation of $(3-4)$ with respect to q shows that the amount of insurance I that she chooses to buy is a decreasing function of the price q.

