Q1. What is a consumer's expenditure function, if her (direct) utility function is

$$
U\left(x_{1}, x_{2}\right)=\log \left(x_{1}\right)+\log \left(x_{2}\right)
$$

(where "log" denotes the natural logarithm, and where $0<a<1$ is a constant)?

A1. These are Cobb-Douglas preferences (which means that they are a special case of $C E S$ preferences, with an elasticity of substitution equal to 1).

Solving directly, the first-order conditions for the minimization of $p_{1} x_{1}+p_{2} x_{2}$ subject to $U\left(x_{1}, x_{2}\right)=u$ are

$$
\begin{align*}
p_{1} & =\frac{\mu}{x_{1}} \tag{1-1}\\
p_{2} & =\frac{\mu}{x_{2}} \tag{1-2}
\end{align*}
$$

where μ is the Lagrange multiplier on the constraint $\log \left(x_{1}\right)+\log \left(x_{2}\right)=u$.
Equations ($1-1$) and ($1-2$) imply that

$$
\begin{equation*}
x_{2}=\frac{p_{1}}{p_{2}} x_{1} \tag{1-3}
\end{equation*}
$$

so that the utility constraint implies that

$$
\begin{equation*}
\log \left(x_{1}\right)+\log \left(\frac{p_{1} x_{1}}{p_{2}}\right)=u \tag{1-4}
\end{equation*}
$$

Using the fact that $\log \left(\frac{\alpha \beta}{\gamma}\right)=\log (\alpha)+\log (\beta)-\log (\gamma)$, equation $(1-4)$ implies that

$$
\begin{equation*}
2 \log \left(x_{1}\right)+\log \left(p_{1}\right)-\log \left(p_{2}\right)=u \tag{1-5}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{1}=e^{u / 2}\left(\frac{p_{2}}{p_{1}}\right)^{1 / 2} \tag{1-6}
\end{equation*}
$$

which is the Hicksian demand function for good 1. Substituting from equation $(1-3)$ into $(1-6)$,

$$
\begin{equation*}
x_{2}=e^{u / 2}\left(\frac{p_{1}}{p_{2}}\right)^{1 / 2} \tag{1-7}
\end{equation*}
$$

Since $e(\mathbf{p}, u)=x_{1}^{H}(\mathbf{p}, u)+p_{2}^{H}(\mathbf{p}, u)$, therefore, the expenditure function is

$$
\begin{equation*}
e(\mathbf{p}, u)=2 e^{u / 2}\left[p_{1} p_{2}\right]^{1 / 2} \tag{1-8}
\end{equation*}
$$

Alternatively, we can start with the Marshallian demand functions for Cobb-Douglas preferences,

$$
\begin{equation*}
x_{i}^{M}(\mathbf{p}, y)=\frac{y}{2 p_{i}} \quad i=1,2 \tag{1-9}
\end{equation*}
$$

and plug them into the definition of the direct utility function, so that

$$
\begin{equation*}
v(\mathbf{p}, y)=\log \left(\frac{y}{2 p_{1}}\right)+\log \left(\frac{y}{2 p_{2}}\right)=2 \log y-2 \log 2-\log \left(p_{1}\right)-\log \left(p_{2}\right) \tag{1-10}
\end{equation*}
$$

And use the fact that $v(\mathbf{p}, e(\mathbf{p}, u))=u$ to infer that

$$
\begin{equation*}
2 \log [e(\mathbf{p}, u)]-2 \log 2-\log \left(p_{1}\right)-\log \left(p_{2}\right)=u \tag{1-11}
\end{equation*}
$$

implying that

$$
\begin{equation*}
\log [e(\mathbf{p}, u)]=\frac{u}{2}+\log 2+\frac{1}{2} \log \left(p_{1}\right)+\frac{1}{2} \log \left(p_{1}\right) \tag{1-12}
\end{equation*}
$$

Taking anti-logarithms of both sides of equation $(1-12)$ yields equation $(1-8)$, the expression for the expenditure function.

Q2. (Without proof), give two different properties which are equivalent to the statement : "person 1, with the utility-of-wealth function $U(W)$ is always more risk averse than person 2, with the utility-of-wealth function $V(W)$ ".

A2. Pages 112 - 115 of Jehle and Reny mention these properties. In no particular order, the following statements are equivalent to the statement in the question :
i Any gamble which person 1 is willing to take, person 2 is also willing to take.
ii. For any gamble g, the certainty equivalent $C E_{1}$ for person 1 , defined by

$$
E U(g)=U\left(C E_{1}\right)
$$

is smaller than the certainty equivalent for person 2 , defined by

$$
E V(g)=V\left(C E_{2}\right)
$$

$i i a$. For any gamble g, the risk premium $R P$ for the gamble, defined by

$$
R P=E g-C E
$$

is higher for person 1 than for person 2 .
iii. Person 1's utility function is more concave than person 2's : there exists an increasing, concave function $h(\cdot)$ such that

$$
U(W)=h[V(W)]
$$

$i v$. For any level of wealth W, person 1's coefficient of absolute risk aversion, defined by

$$
R_{A}^{1}(W) \equiv-\frac{U^{\prime \prime}(W)}{U^{\prime}(W)}
$$

is greater than person 2's coefficient of absolute risk aversion

$$
R_{A}^{2}(W) \equiv-\frac{V^{\prime \prime}(W)}{V^{\prime}(W)}
$$

iva. For any level of wealth W, person 1 has a greater coefficient of relative risk aversion than person 2, where the coefficient of relative risk aversion is defined by

$$
R_{R}^{i}(W) \equiv R_{A}^{i}(W) W
$$

Q3. What is the profit function $\pi\left(p, w_{1}, w_{2}\right)$ for a firm with a cost function

$$
C\left(w_{1}, w_{2}, y\right)=\frac{w_{1} w_{2}}{\left(w_{1}+w_{2}\right)^{2}} y^{2} \quad ?
$$

A3. The firm's profit function $\pi\left(p, w_{1}, w_{2}\right)$ is the maximum value of

$$
\begin{equation*}
p y-C\left(w_{1}, w_{2}, y\right) \tag{3-1}
\end{equation*}
$$

with respect to y.
In this case, the firm chooses y to maximize

$$
\begin{equation*}
p y-\frac{w_{1} w_{2}}{\left(w_{1}+w_{2}\right)^{2}} y^{2} \tag{3-2}
\end{equation*}
$$

yielding a first-order condition

$$
\begin{equation*}
2 y \frac{w_{1} w_{2}}{\left(w_{1}+w_{2}\right)^{2}}=p \tag{3-3}
\end{equation*}
$$

or

$$
\begin{equation*}
y\left(p, w_{1}, w_{2}\right)=\frac{p\left(w_{1}+w_{2}\right)^{2}}{2 w_{1} w_{2}} \tag{3-4}
\end{equation*}
$$

which is the firm's supply function. [The second-order condition for profit maximization is satisfied here : the second derivative of $(3-1)$ with respect to y is $-2 \frac{w_{1} w_{2}}{\left(w_{1}+w_{2}\right)^{2}}<0$.]

Plugging $(3-4)$ into the definition $(3-1)$ of profit

$$
\begin{equation*}
\pi\left(p, w_{1}, w_{2}\right)=\frac{p^{2}\left(w_{1}+w_{2}\right)^{2}}{2 w_{1} w_{2}}-\frac{w_{1} w_{2}}{\left(w_{1}+w_{2}\right)^{2}} \frac{p^{2}\left(w_{1}+w_{2}\right)^{4}}{4\left(w_{1} w_{2}\right)^{2}}=\frac{p^{2}\left(w_{1}+w_{2}\right)^{2}}{4 w_{1} w_{2}} \tag{3-5}
\end{equation*}
$$

