$Q 1$. Are the preferences represented by the utility function

$$
U\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-\frac{1}{x_{2}}+\left(x_{3}\right)^{2}
$$

strictly monotonic? Convex? Explain.

A1. The preferences are strictly monotonic because the partial derivatives are all positive for any consumption vector $\mathbf{x} \gg 0$:

$$
\begin{gather*}
\frac{\partial U}{\partial x_{1}}=1 \tag{1-1}\\
\frac{\partial U}{\partial x_{2}}=\frac{1}{\left(x_{2}\right)^{2}} \tag{1-2}\\
\frac{\partial U}{\partial x_{3}}=2 x_{3} \tag{1-3}
\end{gather*}
$$

But the term $\left(x_{3}\right)^{2}$ suggests that preferences may not be convex. To show that preferences indeed are not convex, a single counter-example is a all that is needed. Here

$$
\begin{align*}
& U\left(\mathbf{x}^{1}\right)=U(4,1,1)=4 \tag{1-4}\\
& U\left(\mathbf{x}^{2}\right)=U(1,1,2)=4 \tag{1-5}
\end{align*}
$$

But the consumption bundle which is halfway between $(4,1,1)$ and $(1,1,2)$ is $(2.5,1,1.5)$ and

$$
\begin{equation*}
U(2.5,1,1.5)=3.75<4 \tag{1-6}
\end{equation*}
$$

so that $U\left(t \mathbf{x}^{1}+(1-t) \mathbf{x}^{2}\right)<U\left(\mathbf{x}^{1}\right)=U\left(\mathbf{x}^{2}\right)$ when $t=0.5$, demonstrating that preferences are not convex.
$Q 2$. Define the term "certainty equivalent" to a gamble, and show that the certainty equivalent to a gamble must be less than the expected value of the gamble for a risk-averse (von Neumann Morgenstern) expected utility maximizer.
$A 2$. The certainty equivalent $C E$ to a gamble is the amount of wealth such that

$$
\begin{equation*}
U(C E)=p_{1} U\left(W_{1}\right)+p_{2} U\left(W_{2}\right)+\cdots+p_{n} U\left(W_{n}\right) \tag{2-1}
\end{equation*}
$$

if the gamble g is defined as

$$
g \equiv\left(p_{1} \circ W_{1}, p_{2} \circ W_{2}, \ldots, p_{n} \circ W_{n}\right)
$$

If the person is risk averse, then her utility-of-wealth function $U(\cdot)$ must be concave. And by definition, for any concave function,

$$
\begin{equation*}
U\left(p_{1} W_{1}+p_{2} W_{2}+\cdots+p_{n} W_{n}\right)>p_{1} U\left(W_{1}\right)+p_{2} U\left(W_{2}\right)+\cdots+p_{n} U\left(W_{n}\right) \tag{2-2}
\end{equation*}
$$

So equations $(2-1)$ and $(2-2)$ together imply that

$$
\begin{equation*}
U\left(p_{1} W_{1}+p_{2} W_{2}+\cdots+p_{n} W_{n}\right)>U(C E) \tag{2-3}
\end{equation*}
$$

and the fact that $U^{\prime}>0$ and $(2-3)$ then imply that

$$
\begin{equation*}
p_{1} W_{1}+p_{2} W_{2}+\cdots+p_{n} W_{n}>C E \tag{2-4}
\end{equation*}
$$

which means the expected value of the gamble must exceed the certainty equivalent.
$Q 3$. What is the cost function for a firm with a production function

$$
f\left(x_{1}, x_{2}\right)=x_{1}+\log \left(1+x_{2}\right)
$$

(where "log" denotes the natural logarithm)?
$A 3$. Cost minimization requires that

$$
\begin{equation*}
f_{1} / f_{2}=w_{1} / w_{2} \tag{3-1}
\end{equation*}
$$

where f_{i} refers to the partial derivative of the production function with respect to the quantity of input i. Here, equation $(3-1)$ becomes

$$
\begin{equation*}
1+x_{2}=\frac{w_{1}}{w_{2}} \tag{3-2}
\end{equation*}
$$

Substituting for x_{2} from (3-2) into the production function,

$$
\begin{equation*}
y=f\left(x_{1}, x_{2}\right)=x_{1}+\log w_{1}-\log w_{2} \tag{3-3}
\end{equation*}
$$

so that the conditional input demand for input 1 can be written

$$
\begin{equation*}
x_{1}\left(w_{1}, w_{2}, y\right)=y-\log w_{1}+\log w_{2} \tag{3-4}
\end{equation*}
$$

Meanwhile, $(3-2)$ can be written

$$
\begin{equation*}
x_{2}\left(w_{1}, w_{2}, y\right)=\frac{w_{1}}{w_{2}}-1 \tag{3-5}
\end{equation*}
$$

The cost function $C\left(w_{1}, w_{2}, y\right)$ must equal $w_{1} x_{1}\left(w_{1}, w_{2}, y\right)+w_{2} x_{2}\left(w_{1}, w_{2}, y\right)$, or

$$
\begin{equation*}
C\left(w_{1}, w_{2}, y\right)=w_{1} y-w_{1} \log w_{1}+w_{1} \log w_{2}+w_{1}-w_{2} \tag{3-6}
\end{equation*}
$$

[Equation $(3-5)$ is valid only if $w_{1} \geq w_{2}$; if $w_{2}>w_{1}$ then the firm should use only input $\# 1$, so that $x_{1}\left(w_{1}, w_{2}, y\right)=y$ and $C\left(w_{1}, w_{2}, y\right)=w_{1} y$.]

