GS/ECON 5010 APPLIED MICROECONOMICS

Answers to Midterm Exam (of October 30 2017)

Q1. What are the Marshallian demand functions for a person whose preferences can be represented by the utility function

$$
U\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+\log \left(x_{2}\right)+\log \left(x_{3}\right) \quad ?
$$

A1. The first-order conditions for the consumer's utility maximization, subject to her budget constraint, are

$$
\begin{gather*}
\frac{\partial U}{\partial x_{1}}=1=\lambda p_{1} \tag{1-1}\\
\frac{\partial U}{\partial x_{2}}=\frac{1}{x_{2}}=\lambda p_{2} \tag{1-2}\\
\frac{\partial U}{\partial x_{3}}=\frac{1}{x_{3}}=\lambda p_{3} \tag{1-3}
\end{gather*}
$$

where λ is the Lagrange multiplier associated with the budget constraint $p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}=y$.
Substituting from ($1-1$) for λ into equations $(1-2)$ and ($1-3$),

$$
\begin{gather*}
\frac{1}{x_{2}}=\frac{p_{2}}{p_{1}} \tag{1-4}\\
\frac{1}{x_{3}}=\frac{p_{3}}{p_{1}} \tag{1-5}
\end{gather*}
$$

or

$$
\begin{align*}
& x_{2}^{M}\left(p_{1}, p_{2}, p_{3}, y\right)=\frac{p_{1}}{p_{2}} \tag{1-6}\\
& x_{3}^{M}\left(p_{1}, p_{2}, p_{3}, y\right)=\frac{p_{1}}{p_{3}} \tag{1-7}
\end{align*}
$$

which are the Marshallian demand functions for goods 2 and 3.
From the person's budget constraint,

$$
\begin{equation*}
x_{1}\left(p_{1}, p_{2}, p_{3}, y\right)=\frac{1}{p_{1}}\left[y-p_{2} x_{2}^{M}\left(p_{1}, p_{2}, p_{3}, y\right)-p_{3} x_{3}^{M}\left(p_{1}, p_{2}, p_{3}, y\right)\right] \tag{1-8}
\end{equation*}
$$

or (from equations $(1-6)$ and $(1-7)$)

$$
\begin{equation*}
x_{1}^{M}\left(p_{1}, p_{2}, p_{3}, m\right)=\frac{y}{p_{1}}-2 \tag{1-9}
\end{equation*}
$$

[Equation ($1-9$) makes sense only if $y \geq 2 p_{1}$. If the price of good 1 is high enough so that $y / p_{1}<2$, then the person will be at a corner solution. She will choose not to consume any of good 1, and will pick x_{2} and x_{3} so as to maximize $\log \left(x_{2}\right)+\log \left(x_{3}\right)$ subject to her budget
constraint. That's maximizing a Cobb-Douglas utility function, so that in this case (the case in which $y<2 p_{1}$), her Marshallian demand functions will be

$$
\begin{gather*}
x_{1}^{M}\left(p_{1}, p_{2}, p_{3}, y\right)=0 \tag{1-10}\\
x_{2}^{M}\left(p_{1}, p_{2}, p_{3}, y\right)=\frac{y}{2 p_{2}} \tag{1-11}\\
x_{3}^{M}\left(p_{1}, p_{2}, p_{3}, y\right)=\frac{y}{2 p_{3}} \tag{1-12}
\end{gather*}
$$

$Q 2$. Give three distinct definitions of what it means for person A to be always more risk averse than person B.
$A 2$. The following are all equivalent statements, each stating that person A is more risk averse than person B

1) If person A is willing to undertake a risky gamble g, then so is person B.
2) If person A 's utility-of-wealth function is $u^{A}(W)$ and person B 's utility-of-wealth function is $U^{B}(W)$, then

$$
u^{A}(W)=F\left[U^{B}(W)\right]
$$

where $F(\cdot)$ is an increasing, concave function.
3) For any risky gamble g, person A 's certainty equivalent to the gamble is less than person B 's.
4) For any risky gamble g, person A 's risk premium for the gamble is greater than person B 's.
5) For any level of wealth W, person A 's coefficient of absolute risk aversion, $-u_{A}^{\prime \prime}(W) / u_{A}^{\prime}(W)$ is greater than person B's $-U_{B}^{\prime \prime}(W) / U_{B}^{\prime}(W)$.
6) For any level of wealth W, person A 's coefficient of relative risk aversion, $-u_{A}^{\prime \prime}(W) W / u_{A}^{\prime}(W)$ is greater than person B's $-U_{B}^{\prime \prime}(W) W / U_{B}^{\prime}(W)$.

Q3. What is the profit function $\pi\left(p, w_{1}, w_{2}\right)$ for a perfectly competitive firm with a production function

$$
f\left(x_{1}, x_{2}\right)=3\left(x_{1} x_{2}\right)^{1 / 3} \quad ?
$$

There are two paths to get to the same answer : (i) find directly the input combination (x_{1}, x_{2}) which maximizes profits $p f\left(x_{1}, x_{2}\right)-w_{1} x_{1}-w_{2} x_{2}$, or (ii) first find the firm's cost function $C\left(w_{1}, w_{2}, y\right)$, and then find the output level y which maximizes the firm's profit $p y-C\left(w_{1}, w_{2}, y\right)$.
(i) The "direct" method : maximization of $p f\left(x_{1}, x_{2}\right)-w_{1} x_{1}-w_{2} x_{2}$ with respect to x_{1} and x_{2} yields first-order conditions

$$
\begin{align*}
& p x_{1}^{-2 / 3} x_{2}^{1 / 3}-w_{1}=0 \tag{3-1}\\
& p x_{1}^{1 / 3} x_{2}^{-2 / 3}-w_{2}=0 \tag{3-2}
\end{align*}
$$

when $f\left(x_{1}, x_{2}\right)=\left(x_{1} x_{2}\right)^{1 / 3}$.
Equations (5-1) and (5-2) imply that, when the firm maximizes profits,

$$
\begin{equation*}
x_{2}=\frac{w_{1}}{w_{2}} x_{1} \tag{3-3}
\end{equation*}
$$

Substituting (3-3) into (3-1),

$$
\begin{equation*}
p\left[w_{1}\right]^{1 / 3}\left[w_{2}\right]^{-1 / 3} x_{1}^{-1 / 3}=w_{1} \tag{3-4}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{1}\left(w_{1}, w_{2}, p\right)=p^{3}\left[w_{1}\right]^{-2}\left[w_{2}\right]^{-1} \tag{3-5}
\end{equation*}
$$

which is the unconditional input demand function for input (1). From (3-3), the unconditional input demand function for input 2 is

$$
\begin{equation*}
x_{2}\left(w_{1}, w_{2}, p\right)=p^{3}\left[w_{1}\right]^{-1}\left[w_{2}\right]^{-2} \tag{3-6}
\end{equation*}
$$

Given these unconditional input demand functions, the firm's profit function is

$$
\begin{equation*}
\pi\left(w_{1}, w_{2}, y\right)=p f\left(x_{1}\left(w_{1}, w_{2}, p\right), x_{2}\left(w_{1}, w_{2}, p\right)\right)-w_{1} x_{1}\left(w_{1}, w_{2}, p\right)-w_{2} x_{2}\left(w_{1}, w_{2}, p\right) \tag{3-7}
\end{equation*}
$$

Here

$$
\begin{gather*}
\pi\left(w_{1}, w_{2}, p\right)=3 p\left[p^{3}\left[w_{1}\right]^{-2}\left[w_{2}\right]^{-1}\right]^{1 / 3}\left[p^{3}\left[w_{1}\right]^{-1}\left[w_{2}\right]^{-2}\right]^{1 / 3} \tag{3-8}\\
-w_{1}\left[p^{3}\left[w_{1}\right]^{-2}\left[w_{2}\right]^{-1}\right]-w_{2}\left[p^{3}\left[w_{1}\right]^{-1}\left[w_{2}\right]^{-2}\right]
\end{gather*}
$$

which can be simplified to

$$
\begin{equation*}
\pi\left(w_{1}, w_{2}, p\right)=p^{3} w_{1}^{-1} w_{2}^{-1} \tag{3-9}
\end{equation*}
$$

(ii) The "indirect" method using the cost function.

The cost function comes from the minimization of $w_{1} x_{1}+w_{2} x_{2}$ subject to the constraint $f\left(x_{1}, x_{2}\right)=y$. The first-order conditions for this minimization are

$$
\begin{align*}
& w_{1}=\mu\left[x_{1}^{-2 / 3} x_{2}^{1 / 3}\right] \tag{3-10}\\
& w_{2}=\mu\left[x_{1}^{1 / 3} x_{2}^{-2 / 3}\right] \tag{3-11}
\end{align*}
$$

where μ is the Lagrange multiplier associated with the constraint $f\left(x_{1}, x_{2}\right)=y$.

Equations (3-10) and (3-11) imply that

$$
\begin{equation*}
x_{2}=\frac{w_{1}}{w_{2}} x_{1} \tag{3-12}
\end{equation*}
$$

so that the constraint $f\left(x_{1}, x_{2}\right)=y$ can be written

$$
\begin{equation*}
3\left(w_{1}\right)^{1 / 3}\left(w_{2}\right)^{-1 / 3}\left(x_{1}\right)^{2 / 3}=y \tag{3-13}
\end{equation*}
$$

which can be re-arranged into the conditional input demand function for x_{1},

$$
\begin{equation*}
x_{1}\left(w_{1}, w_{2}, y\right)=\left[3^{-3 / 2}\right]\left(w_{1}\right)^{-1 / 2}\left(w_{2}\right)^{1 / 2} y^{3 / 2} \tag{3-14}
\end{equation*}
$$

From (3-12), the conditional input demand function for x_{2} is

$$
\begin{equation*}
x_{2}\left(w_{1}, w_{2}, y\right)=\left[3^{-3 / 2}\right]\left(w_{1}\right)^{1 / 2}\left(w_{2}\right)^{-1 / 2} y^{3 / 2} \tag{3-15}
\end{equation*}
$$

Which means that the cost function for the firm is $w_{1} x_{1}\left(w_{1}, w_{2}, y\right)+w_{2} x_{2}\left(w_{1}, w_{2}, y\right)$ or

$$
\begin{equation*}
C\left(w_{1}, w_{2}, y\right)=2\left[3^{-3 / 2}\right]\left(w_{1}\right)^{1 / 2}\left(w_{2}\right)^{1 / 2} y^{3 / 2} \tag{3-16}
\end{equation*}
$$

The firm maximizes profits by choosing an output level y to maximize

$$
p y-C\left(w_{1}, w_{2}, y\right)
$$

From (3-16), the first-order condition for this maximization is

$$
\begin{equation*}
p-3\left[3^{-3 / 2}\right]\left(w_{1}\right)^{1 / 2}\left(w_{2}\right)^{1 / 2} y^{1 / 2}=0 \tag{3-17}
\end{equation*}
$$

or

$$
\begin{equation*}
y\left(w_{1}, w_{2}, p\right)=3\left[\left(w_{1}\right)^{-1}\left(w_{2}\right)^{-1} p^{2}\right] \tag{3-18}
\end{equation*}
$$

which is the firm's supply function. The firm's profit is $p y\left(w_{1}, w_{2}, p\right)-C\left(w_{1}, w_{2}, y\left[w_{1}, w_{2}, p\right]\right)$, so that

$$
\begin{equation*}
\pi\left(w_{1}, w_{2}, p\right)=3\left[\left(w_{1}\right)^{-1}\left(w_{2}\right)^{-1} p^{3}\right]-2\left[3^{-3 / 2}\right]\left(w_{1}\right)^{1 / 2}\left(w_{2}\right)^{1 / 2}\left(3\left[\left(w_{1}\right)^{-1}\left(w_{2}\right)^{-1} p^{2}\right]\right)^{3 / 2} \tag{3-19}
\end{equation*}
$$

which can be simplified to

$$
\begin{equation*}
\pi\left(w_{1}, w_{2}, y\right)=\left(w_{1}\right)^{-1}\left(w_{2}\right)^{-1} p^{3} \tag{3-20}
\end{equation*}
$$

(which is the same as $(3-9)$).

