Production Functions

$$
f: \Re_{+}^{n} \rightarrow \Re_{+}
$$

$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: quantity of output produced from vector of quantities of inputs ; x_{1} units of input \#1, x_{2} units of input \#2, etc.
$\frac{\partial f}{\partial x_{i}}$: marginal product of input i
assumptions : $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is strictly monotonic, continuous, quasi-concave
definition : MRTS (marginal rate of technical substitution) : $M R T S_{i j}=\frac{\partial f}{\partial x_{i}} / \frac{\partial f}{\partial x_{j}}$
definition : separability : $f(\mathrm{x})$ is separable if $M R T S_{i j}$ does not vary with x_{k} (where $k \neq i, j$)
more formally : $f(\mathbf{x})$ is weakly separable if the n inputs can be divided into S different groups, $N_{1}, N_{2}, \ldots, N_{S}$, and the $M R T S$ between any two inputs in group s does not vary with the quantity of any input in some other group t
example of separability : $C E S$ production function

$$
f(\mathbf{x}) \equiv\left(a_{1} x_{1}^{\rho}+a_{2} x_{2}^{\rho}+\cdots+a_{n} x_{n}^{\rho}\right)^{\mu / \rho}
$$

where $a_{i}>0,-\infty<\rho \leq 1, \mu>0$

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}=a_{i} A x_{i}^{\rho-1} \tag{1}
\end{equation*}
$$

where

$$
A \equiv \mu\left(a_{1} x_{1}^{\rho}+a_{2} x_{2}^{\rho}+\cdots+a_{n} x_{n}^{\rho}\right)^{\mu / \rho-1}
$$

so that

$$
\begin{equation*}
M R T S_{i j}=\frac{a_{i}}{a_{j}}\left(\frac{x_{j}}{x_{i}}\right)^{1-\rho} \tag{2}
\end{equation*}
$$

meaning strong separability, since $M R T S_{i j}$ doesn't depend on anything but x_{i} and x_{j}

Elasticity of Substitution

motivation : price-taking firms will choose input combinations so that

$$
\frac{f_{i}}{f_{j}}=\frac{w_{i}}{w_{j}}
$$

where w_{i} is the unit price of input i
elasticity of substitution σ measures the percentage by which $\frac{x_{i}}{x_{j}}$ falls, if $\frac{w_{i}}{w_{j}}$ increases by 1%
definition

$$
\begin{equation*}
\sigma=-\frac{d\left(x_{i} / x_{j}\right)}{x_{i} / x_{j}} / \frac{d\left(f_{i} / f_{j}\right)}{f_{i} / f_{j}} \tag{3}
\end{equation*}
$$

for $C E S$ production function

$$
\frac{f_{i}}{f_{j}}=\left(\frac{a_{i}}{a_{j}}\right)\left(\frac{x_{i}}{x_{j}}\right)^{\rho-1}
$$

so that

$$
\frac{d\left(x_{i} / x_{j}\right)}{d\left(f_{i} / f_{j}\right)}=\frac{1}{\rho-1}\left[\frac{a_{j}}{a_{i}}\right]^{1 /(\rho-1)}\left[\frac{f_{i}}{f_{j}}\right]^{1 /(\rho-1)-1}
$$

which equals

$$
\frac{1}{\rho-1}\left[\frac{f_{i}}{f_{j}}\right]^{-1} \frac{x_{i}}{x_{j}}
$$

so that the elasticity of substitution is $1 /(1-\rho)$.

