Solution Concepts for Games in Strategic Form

solution?

prediction of what happens in the game so far...
games with dominant strategy
example : Prisoners' Dilemma (e.g. 3) : t is a strictly dominant strategy for player $1, L$ is a strictly dominant strategy for player 2

$$
\left(\begin{array}{ccc}
1 \backslash 2 & L & R \\
& & \\
t & (2,2) & (7,0) \\
b & (0,7) & (6,6)
\end{array}\right)
$$

so that the solution is (t, L)
but in example 4, only one player (player \#1) has a dominant strategy

$$
\left(\begin{array}{ccc}
1 \backslash 2 & L & R \\
& & \\
t & (2,4) & (7,0) \\
b & (0,0) & (6,6)
\end{array}\right)
$$

so it cannot be solved using (just) dominant strategies
example 5 can be solved using weak dominance $: t$ is a weakly dominant strategy for player 1 , and L is a weakly dominant strategy for player 2

$$
\left(\begin{array}{ccc}
1 \backslash 2 & L & R \\
& & \\
t & (5,5) & (0,0) \\
b & (0,0) & (0,0)
\end{array}\right)
$$

Elimination of Dominated Strategies

if a player has a (strictly) dominated strategy, then we can cross it out : why would she ever choose to play it?
so that a game like example 6 , in which b is strictly dominated by t for player 1

$$
\left(\begin{array}{ccc}
1 \backslash 2 & L & R \\
t & (5,5) & (8,0) \\
m & (8,4) & (-1,3) \\
b & (0,3) & (7,7)
\end{array}\right)
$$

becomes example 7

$$
\left(\begin{array}{ccc}
1 \backslash 2 & L & R \\
t & (5,5) & (8,0) \\
m & (8,4) & (-1,3)
\end{array}\right)
$$

now R is a strictly dominated strategy for player 2 in example 7 (but it wasn't strictly dominated in example 6)
thought process (by player 2) : if player 1 were to play b, then R would be better for me than L; but player 1 will never play b, because it is strictly dominated for her ; knowing that player 1 will never play b, I know that I should never play R
so we can cross out column R for player 2 , which leaves us with a 1-by-2 game

$$
\left(\begin{array}{cc}
1 \backslash 2 & L \\
& \\
t & (5,5) \\
m & (8,4)
\end{array}\right)
$$

in which m is player 1's best strategy
so example 6 can be solved by iterated elimination of strictly dominated strategies ; the solution is (m, L)

1's thought process : I should never play b, since it is a strictly dominated strategy for me ; but player 2 knows the game, and he can see that b is strictly dominated for me ; so he knows that I will not play b, and therefore he concludes that he should not play R; if he is not going to play R, then I should pick m
general definition : a game is solvable by interated elimination of strictly dominated strategies, if the process of crossing out strictly dominated rows and/or columns leads to only one row and one column left
does the order of crossing out matter? not if the crossed-out strategies are strictly dominated
game 4 can also be solved by iterated elimination of strictly dominated strategies, while game 5 can be solved by iterated elimination of weakly dominated strategies
examples 1 and 2 cannot be solved by iterated elimination of strictly dominated strategies
example 8 can be solved by iterated elimination of weakly dominated strategies : but notice that the solution involves a pretty long chain of "I know that she knows that I know that she knows ..."
common knowledge : players all know the game ; players know that the other players know the game ; players know that the other players know that they know the game ; etcetera

Example 8

$$
\left(\begin{array}{ccccc}
1 \backslash 2 & L & C L & C R & R \\
& & & & \\
t & (1,0) & (1,0) & (1,0) & (1,0) \\
m t & (0,2) & (2,1) & (2,1) & (2,1) \\
m b & (0,2) & (1,3) & (3,2) & (3,2) \\
b & (0,2) & (1,3) & (2,4) & (4,3)
\end{array}\right)
$$

column R is weakly dominated for player 2 ; cross that out to get

$$
\left(\begin{array}{cccc}
1 \backslash 2 & L & C L & C R \\
& & & \\
t & (1,0) & (1,0) & (1,0) \\
m t & (0,2) & (2,1) & (2,1) \\
m b & (0,2) & (1,3) & (3,2) \\
b & (0,2) & (1,3) & (2,4)
\end{array}\right)
$$

in which row b is weakly dominated for player 1 , so that we get

$$
\left(\begin{array}{cccc}
1 \backslash 2 & L & C L & C R \\
& (1,0) & (1,0) & (1,0) \\
t & (0,2) & (2,1) & (2,1) \\
m t & (0,2) & (1,3) & (3,2)
\end{array}\right)
$$

now column $C R$ is weakly dominated (by $C L$) for player 2, so we get

$$
\left(\begin{array}{ccc}
1 \backslash 2 & L & C L \\
& & \\
t & (1,0) & (1,0) \\
m t & (0,2) & (2,1) \\
m b & (0,2) & (1,3)
\end{array}\right)
$$

now $m b$ can be crossed out, and then $C L$, so that the solution is (t, L)

One More Extension..

a strategy is also strictly dominated if some convex combination of other strategies always does better....even if it is not strictly dominated by any single ("pure") strategy
as in game $8 a$

$$
\left(\begin{array}{ccc}
1 \backslash 2 & L & R \\
& & \\
t & (3,8) & (2,4) \\
m & (2,0) & (6,3) \\
b & (8,2) & (0,4)
\end{array}\right)
$$

in this game, no single strategy strictly dominates any other strategy (for either player)
but a convex combination : play row b half the time, and play row m half the time, leads to a row with expected payoffs 5 and 3 for player 1: so t is dominated strictly by the mixed strategy : m with probability 0.5 and b with probability 0.5
so this game is solvable by iterated elimination of strictly dominated strategies, and has a solution (m, R)

