## Nash Equilibrium

terminology : let $S$ be player 1's set of strategies (e.g. $S=\{t, m, b\}$ ),
and let $T$ be player 2's set of strategies
let $u^{1}(s, t)$ be player 1 's payoff, when she plays $s \in S$, and when player 2 plays a strategy $t \in T$
strategy $s^{*}$ is called a best response for player 1, to player 2's strategy $t$ if

$$
u^{1}\left(s^{*}, t\right) \geq u^{1}(s, t) \quad \text { for } \quad \text { all } \quad s \in S
$$

in other words: if player 2 plays $t$, then $s^{*}$ will be a best response for player 1 if $s^{*}$ maximizes player 1's payoff along the column corresponding to strategy $t$ for player 2
or (just) : $s^{*}$ is a best response for 1 to $t$ if $s^{*}$ is the best strategy for 1 to choose, if 2 chooses $t$
definition : a pair of strategies $\left(s^{N}, t^{N}\right)$ is a pure strategy Nash equilibrium for the 2-player game if (and only if)
$s^{N}$ is 1 's best response to $t^{N}$
$t^{N}$ is 2's best response to $s^{N}$
so example 9 is a game which has no weakly dominated players for either player, but which does have a Nash equilibrium

$$
\left(\begin{array}{cccc}
1 \backslash 2 & L & C & R \\
& & & \\
t & (1,6) & (2,3) & (4,5) \\
b & (0,2) & (1,4) & (5,3)
\end{array}\right)
$$

$(t, L)$ is the (only) Nash equilibrium to the above game
game 2 (the coordination game) also has no dominated strategies, but it does have a Nash equilibrium in pure strategies : 2 of them actually ; so does this example, example 11

$$
\left(\begin{array}{ccc}
1 \backslash 2 & L & R \\
& & \\
t & (6,1) & (0,0) \\
b & (5,9) & (1,10)
\end{array}\right)
$$

Nash equilibria (in pure strategies) : $(t, L)$ and (b, R)
but game 1 has no Nash equilibrium in pure strategies ; neither does this one, example 10

$$
\left(\begin{array}{ccc}
1 \backslash 2 & L & R \\
& & \\
t & (1,1) & (0,8) \\
b & (0,6) & (5,5)
\end{array}\right)
$$

every solution by iterated elimination of weakly dominated strategies is also a pure strategy Nash equilibrium

## but not vice versa

and there can be other Nash equilibria to games which can be solved by iterated elimination of weakly dominated strategies
(not true for iterated elimination of strictly dominated strategies)
example 5 has 2 Nash equilibria in pure strategies

$$
\left(\begin{array}{ccc}
1 \backslash 2 & L & R \\
& & \\
t & (5,5) & (0,0) \\
b & (0,0) & (0,0)
\end{array}\right)
$$

$(t, L)$ and $(b, R)$
even though $(b, R)$ has each player playing a weakly dominated stratgy

## Mixed Strategies

terminology revision:
what had been called just plain "strategies" $\rightarrow$ pure strategies
if player 1 has $n$ pure strategies $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, then a mixed strategy $\sigma$ is a vector (of dimension $n$ ) of probabilities with which she plays each pure strategy $s_{i}$
so $\sigma$ is a mixed strategy for player 1 if

$$
\begin{align*}
& \sigma_{i} \geq 0 \quad i=1,2, \cdots, n  \tag{1}\\
& \sigma_{1}+\sigma_{2}+\cdots+\sigma_{n}=1 \tag{2}
\end{align*}
$$

each pure strategy is an example of a mixed strategy ; the pure strategy $s_{n}$ is

$$
\sigma=(0,0, \ldots, 0,1)
$$

for example
so players are now allowed to randomize over their mixed strategies
if player 1 plays a mixed strategy $\sigma$ and player 2 plays a mixed strategy $\tau$, what are the players' payoffs?

Rule : the payoff to player 1, when she plays the mixed strategy $\sigma$, and when player 2 plays the mixed strategy $\tau$ is

$$
E u^{1}=\sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{i} \tau_{j} u^{1}\left(s_{i}, t_{j}\right)
$$

(when player 1's pure strategies are $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ and player 2's pure strategies are $\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ )
underlying the rule

1. players are expected utility maximizers
2. they are randomizing independently probability of strategy pair $\left(s_{i}, t_{j}\right)$ occurring is $\sigma_{i} \tau_{j}$

## Nash equilibrium in mixed strategies

$\left(\sigma^{N}, \tau^{N}\right)$ is a Nash equilibrium in mixed strategies if

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{i}^{N} \tau_{j}^{N} u^{1}\left(s_{i}, t_{j}\right) \geq \sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{i} \tau_{j}^{N} u^{1}\left(s_{i}, t_{j}\right) \quad \text { all } \quad \sigma \in \Sigma \tag{3}
\end{equation*}
$$

$\sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{i}^{N} \tau_{j}^{N} u^{2}\left(s_{i}, t_{j}\right) \geq \sum_{i=1}^{n} \sum_{j=1}^{m} \sigma_{i}^{N} \tau_{j} u^{2}\left(s_{i}, t_{j}\right) \quad$ all $\quad \tau \in \mathcal{T}$
where $\Sigma, \mathcal{T}$ are the sets of all the mixed strategies for each player

## Theorem 7.2

(Nash) : any game with a finite number of players, in which each player has a finite number of pure strategies, has at least 1 Nash equilibrium in mixed strategies
note : no matter what mixed strategy $\tau$ player 2 is playing, there is no completely mixed strategy $\sigma$ which will give a higher expected payoff than any of the pure strategies
either there is exactly 1 pure strategy which is player 1's best response, or several pure strategies are tied for player 1's best response in which case any mixed strategy will also be a best response, if it involves picking (with positive probability) only those pure strategies which are best

## example 10

$$
\left(\begin{array}{ccc}
1 \backslash 2 & L & R \\
& & \\
t & (1,1) & (0,8) \\
b & (0,6) & (5,5)
\end{array}\right)
$$

when would player 1 be willing to mix?
only if $t$ and $b$ are tied
that is, only if

$$
\begin{equation*}
1 \cdot \tau_{1}+0 \cdot \tau_{2}=0 \cdot \tau_{1}+5 \cdot \tau_{2} \tag{5}
\end{equation*}
$$

since $\tau_{2}=1-\tau_{1}$, condition (5) can be written

$$
\begin{equation*}
\tau_{1}=5\left(1-\tau_{1}\right) \tag{6}
\end{equation*}
$$

or $\tau_{1}=\frac{5}{6}$
similarly, player 2 would be willing to mix between his strategies only if

$$
\begin{equation*}
\sigma_{1} \cdot 1+\sigma_{2} \cdot 6=\sigma_{1} \cdot 8+\sigma_{2} \cdot 5 \tag{7}
\end{equation*}
$$

or

$$
\sigma=\left(\frac{1}{8}, \frac{7}{8}\right)
$$

that's the (only) mixed strategy Nash equilibrium to example 10 :

$$
\sigma=\left(\frac{1}{8}, \frac{7}{8}\right) ; \tau=\left(\frac{5}{6}, \frac{1}{6}\right)
$$

because : only if player 2 plays $\tau=\left(\frac{5}{6}, \frac{1}{6}\right)$ will player 1 be willing to randomize, and only if player 1 plays $\sigma=\left(\frac{1}{8}, \frac{7}{8}\right)$ will player 2 be willing to randomize

