An Exchange Economy

no production : just re-allocation of given aggregate quantities of goods
$\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$: aggregate endowment vector : aggregate quantities of each good
I : number of people
an allocation x is a list of I consumption bundles x^{i}, one for each person
an allocation x is feasible if

$$
\begin{equation*}
\sum_{i=1}^{I} \mathbf{x}^{i} \leq \mathbf{e} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{i=1}^{I} x_{j}^{i} \leq e_{j} \quad j=1,2, \cdots, n \tag{2}
\end{equation*}
$$

Pareto

if $u^{i}(\cdot)$ is a utility function representing person i 's preferences, then
an allocation x is Pareto-preferred to another allocation y if and only if

$$
\begin{equation*}
u^{i}\left(\mathbf{x}^{i}\right) \geq u^{i}\left(\mathbf{y}^{i}\right) \quad i=1,2, \cdots, I \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{h}\left(\mathbf{x}^{h}\right)>u^{h}\left(\mathbf{y}^{h}\right) \text { for some } h \tag{4}
\end{equation*}
$$

an allocation x is Pareto efficient if there is no feasible allocation y which is Pareto-preferred to x
i.e. : x is Pareto efficient if there is no way to make one person better off (than she is with x) without making someone else worse off

Condition for Pareto Efficiency

an allocation x , with each person's consumption vector $\mathrm{x}^{i} \gg 0$, is Pareto efficient if and only if

$$
\begin{equation*}
\frac{u_{j}^{i}}{u_{k}^{i}}=\frac{u_{j}^{h}}{u_{k}^{h}} \tag{5}
\end{equation*}
$$

for any pair of people i and h, and any pair of commodities j and k
(needed the x_{j}^{i} 's to be strictly positive for this otherwise there might be corner solutions - on the boundary of the Edgeworth box)

An Example

$$
\begin{gathered}
u^{1}\left(\mathbf{x}^{1}\right) \equiv \ln x_{1}^{1}+\ln x_{2}^{1} \\
u^{2}\left(\mathbf{x}^{2}\right) \equiv \ln x_{1}^{2}+4 \ln x_{2}^{2}
\end{gathered}
$$

so that

$$
\begin{gathered}
M R S^{1}=\frac{x_{2}^{1}}{x_{1}^{1}} \\
M R S^{2}=\frac{x_{2}^{2}}{4 x_{1}^{2}}
\end{gathered}
$$

and the efficiency condition (5) is

$$
\begin{equation*}
\frac{x_{2}^{1}}{x_{1}^{1}}=\frac{x_{2}^{2}}{4 x_{1}^{2}} \tag{6}
\end{equation*}
$$

Since an allocation must have $x_{j}^{1}+x_{j}^{2}=e_{j}$ to be feasible, condition (6) can be written

$$
\begin{equation*}
\frac{x_{2}^{1}}{x_{1}^{1}}=\frac{e_{2}-x_{2}^{1}}{4\left(e_{1}-x_{1}^{1}\right)} \tag{7}
\end{equation*}
$$

Equation (7) defines a one-dimensional curve in the Edgeworth box ; implicitly it defines x_{2}^{1} as a function of x_{1}^{1}. Any solution to (7) with $0 \leq x_{2}^{1} \leq e_{2}$ and $0 \leq x_{1}^{1} \leq e_{1}$ will be a Pareto efficient allocation.
(7) can be written

$$
\begin{equation*}
x_{2}^{1}=\frac{e_{2} x_{1}^{1}}{4 e_{1}-3 x_{1}^{1}} \tag{8}
\end{equation*}
$$

Differentiation of (8) shows that the curve slopes up, and that it goes through the corners of the box: $x_{2}^{1}=0$ when $x_{1}^{1}=0$, and $x_{2}^{1}=e_{2}$ when $x_{1}^{1}=e_{1}$

