Coalitions and Blocking

"barter" exchange economy
now people own the endowments
so that

$$
\mathbf{e} \equiv \sum_{i=1}^{I} \mathbf{e}^{i}
$$

\mathbf{e}^{i} is person i 's endowment vector
people could form coalitions to exchange their endowments
if $S \subset\{1,2,3, \ldots, I\}$ is a coalition, what allocations can the members of the coalition get?
the allocation which gives \mathbf{y}^{i} to person i (with i in the coalition S) is feasible for the coalition if

$$
\begin{equation*}
\sum_{i \in S} y_{k}^{i} \leq \sum_{i \in S} e_{k}^{i} \tag{1}
\end{equation*}
$$

for each good k
now consider some allocation x for the whole economy — not just the coalition S
definition : the coalition S is said to "block" the allocation x with allocation y if
$i \mathrm{y}$ is feasible for the coalition : that is y obeys condition (1)
ii $u^{i}\left(\mathbf{y}^{i}\right) \geq u^{i}\left(\mathbf{x}^{i}\right)$ for each person $i \in S$
iii $u^{h}\left(\mathbf{y}^{h}\right)>u^{h}\left(\mathbf{x}^{h}\right)$ for some person $h \in S$

The Core

definition : a feasible allocation x is in the core, if there is no coalition $S \subseteq\{1,2,3, \ldots, I\}$ of people which can block x
so x is in the core if there is no way that a group of people can go off on their own, and all do better than they would under x
if x is in the core, then x must be "individually rational" : $u^{i}\left(\mathbf{x}^{i}\right) \geq u^{i}\left(\mathbf{e}^{i}\right)$ for each person i
if x is in the core, then x must be Pareto efficient
why? because if x were not Pareto optimal, then there would be some other feasible allocation y which was Pareto-preferred ; but then a subset S consisting of everyone could block x with y
with 2 people, that is exactly what the core is : the set of individually rational, Pareto efficient allocations (that is, the part of the contract curve which is between the indifference curves of the two people in the Edgeworth Box)

BUT .. if $I>2$, the core is smaller than that
if $I>2$, there are allocations which are Pareto efficient, and individually rational, but which are not in the core

$$
\begin{aligned}
& \text { example }: I=4 \\
& U^{i}\left(\mathbf{x}^{i}\right)=x_{1}^{i} x_{2}^{i} \text { for each of the } 4 \text { people } \\
& \mathbf{e}^{1}=\mathbf{e}^{2}=(2,0) \text { and } \mathbf{e}^{3}=\mathbf{e}^{4}=(0,2)
\end{aligned}
$$

since $u^{i}\left(\mathbf{e}^{i}\right)=0$ for each person, then any allocation in which $x_{j}^{i}>0$ for all i, j is individually rational
any allocation x in which $x_{1}^{i}=x_{2}^{i}$ for all people i is Pareto efficient
so $\mathrm{x}^{1}=\mathrm{x}^{2}=(0.4,0.4)$, and $\mathrm{x}^{3}=\mathrm{x}^{4}=(1.6,1.6)$ is Pareto efficient and individually rational
this allocation yields $u^{1}=u^{2}=0.16, u^{3}=u^{4}=$ 2.56
it is not in the core
$S=\{1,2,3\}$ can block x with :
$\mathbf{y}^{\mathbf{1}}=\mathbf{y}^{2}=(1.2,0.2), \mathbf{y}^{3}=(1.6,1.6)$
$y_{1}^{1}+y_{1}^{2}+y_{1}^{3}=1.2+1.2+1.6=4=e_{1}^{1}+e_{1}^{2}+e_{1}^{3}$
$y_{2}^{1}+y_{2}^{2}+y_{2}^{3}=0.2+0.2+1.6=2=e_{2}^{1}+e_{2}^{2}+e_{2}^{3}$
and

$$
u^{1}=u^{2}=0.24, u^{3}=2.56
$$

