Single-Price Monopoly

"single-price" means that it charges the same price for each unit it sells : it does not price discriminate among different buyers, or among different units bought by the same buyer
two approaches
first : choosing quantity
pick quantity q so as to maximize profits

$$
\begin{equation*}
p(q) q-C(q, \mathbf{w}) \tag{1}
\end{equation*}
$$

where $p(q)$ is the (aggregate) inverse demand curve it faces - and $C(q, \mathbf{w})$ is the cost function of chapter 3 (with y now called q)
an alternative approach would be to have the firm

choosing price

pick the price P to maximize profits

$$
\begin{equation*}
P Q(P)-C(Q(P), \mathbf{w}) \tag{2}
\end{equation*}
$$

where $Q(P)$ is the market demand curve first-order conditions

$$
\begin{equation*}
Q(P)+P Q^{\prime}(P)-C_{q} Q^{\prime}(P)=0 \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
Q^{\prime}(P) P\left[\frac{Q(P)}{Q^{\prime}(P) P}+1\right]-C_{q} Q^{\prime}(P)=0 \tag{4}
\end{equation*}
$$

which can be written

$$
\begin{equation*}
-Q^{\prime}(P)\left[M C-P\left(1-\frac{1}{\epsilon}\right)\right]=0 \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\epsilon \equiv-Q^{\prime}(P) \frac{P}{Q(P)} \tag{6}
\end{equation*}
$$

is the (absolute value of the) market own-price elasticity of demand
so at the monopoly's optimum

$$
\begin{equation*}
M C=P\left(1-\frac{1}{\epsilon}\right) \tag{7}
\end{equation*}
$$

marginal revenue :

$$
\begin{equation*}
M R \equiv P\left(1-\frac{1}{\epsilon}\right) \tag{8}
\end{equation*}
$$

since $M R \equiv \frac{d}{d q}(p(q) q)$
mark-up rule :

$$
\begin{equation*}
P=M C\left(\frac{\epsilon}{\epsilon-1}\right) \tag{9}
\end{equation*}
$$

need : $\epsilon>1$

