Collusion

q^{i} : output of firm i in the industry
J : number of firms in the industry profit of firm j

$$
\pi^{j}\left(q^{1}, q^{2}, \ldots, q^{J}\right)
$$

with

$$
\frac{\partial \pi^{j}}{\partial q^{i}}<0 \quad i \neq j
$$

special case : homogeneous products

$$
Q \equiv q^{1}+q^{2}+\cdots+q^{J}
$$

i.e. : perfect substitutes

so that

$$
\pi^{j}=p\left(q^{1}+q^{2}+\cdots+q^{J}\right) q^{j}-C\left(q^{j}, \mathbf{w}\right)
$$

(back to the more general case) joint profits of the industry

$$
\begin{equation*}
\Pi \equiv \sum_{j} \pi^{j}\left(q^{1}, q^{2}, \ldots, q^{J}\right) \tag{1}
\end{equation*}
$$

collusion : pick $\left(q^{1}, q^{2}, \ldots, q^{J}\right)$ so as to maximize
first-order conditions

$$
\begin{equation*}
\sum_{j} \frac{\partial \pi^{j}}{\partial q^{i}}=0 \quad i=1,2, \cdots, J \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial \pi^{i}}{\partial q^{i}}=-\sum_{j \neq i} \frac{\partial \pi^{j}}{\partial q^{i}} \quad i=1,2, \cdots, J \tag{3}
\end{equation*}
$$

so, at this collusive optimum,

$$
\frac{\partial \pi^{i}}{\partial q^{i}}>0 \quad i=1,2, \cdots, J
$$

each firm has an incentive to deviate unilaterally from the collusive optimum

Incentives to Cooperate

if firms act unilaterally, they each choose q^{i} to maximize their own profits π^{i}

$$
\begin{equation*}
\frac{\partial \pi^{i}}{\partial q^{i}}=0 \quad i=1,2, \cdots, J \tag{4}
\end{equation*}
$$

small decrease in q^{i} from this level has no effect on firm i 's own profits, but increases the profits of each other firm
so if firm i and j each agree to decrease q^{i} and q^{j} slightly (from the levels firms set unilaterally),

$$
\begin{align*}
& \Delta \pi^{i}=\frac{\partial \pi^{i}}{\partial q^{i}} \Delta q^{i}+\frac{\partial \pi^{i}}{\partial q^{j}} \Delta q^{j}>0 \tag{5}\\
& \Delta \pi^{j}=\frac{\partial \pi^{j}}{\partial q^{i}} \Delta q^{i}+\frac{\partial \pi^{j}}{\partial q^{j}} \Delta q^{j}>0 \tag{6}
\end{align*}
$$

