Cournot Oligopoly

quantities are strategic variables
meaning : each firm chooses a quantity q^{i} to produce
each firm's price is then determined by the market demand
"standard" case : homogeneous output
products of each firm in the industry are perfect substitutes for each other
then price is determined as $p(Q)$, where $p(\cdot)$ is the industry's aggregate inverse demand function, and where

$$
Q \equiv q^{1}+q^{2}+\cdots+q^{J}
$$

is industry output

profit of firm i

$$
\begin{equation*}
\pi^{i}=p(Q) q^{i}-C\left(q^{i}\right) \tag{1}
\end{equation*}
$$

depends on other q^{j} 's through the effect of aggregate output Q on price
since $p^{\prime}(Q)<0, \pi^{i}$ decreases with each other q^{j}
profit maximization by firm i : choose q^{i} to maximize π_{i}, taking each other q^{j} as given
first-order condition

$$
\begin{equation*}
\frac{\partial \pi_{i}}{\partial q^{i}}=p(Q)-M C\left(q^{i}\right)+p^{\prime}(Q) q^{i}=0 \tag{2}
\end{equation*}
$$

example : linear demand ; constant MC

assume that

$$
\begin{equation*}
p=a-b Q \quad a>0, b>0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
C\left(q^{i}\right)=c q^{i} \quad a>c>0 \tag{4}
\end{equation*}
$$

then the first-order condition (2) becomes

$$
\begin{equation*}
\frac{\partial \pi^{i}}{\partial q^{i}}=a-b\left(\sum_{j=1}^{J} q^{j}\right)-c-b q^{i}=0 \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
2 b q^{i}=a-c-b Q_{_i} \tag{6}
\end{equation*}
$$

reaction functions

where

$$
Q_{-i} \equiv \sum_{j \neq i} q^{j}=Q-q^{i}
$$

equation (6), which can also be written

$$
\begin{equation*}
q^{i}=\frac{a-c}{2 b}-\frac{Q_{-i}}{2} \tag{7}
\end{equation*}
$$

is the reaction function for firm i
slope of reaction function : from equation (7),

$$
\begin{equation*}
\frac{\partial q^{i}}{\partial q^{j}}=-\frac{1}{2} \quad i \neq j \tag{8}
\end{equation*}
$$

more generally...

$$
\begin{gathered}
\frac{\partial q^{i}}{\partial q^{j}}=-\frac{p^{\prime}(Q)+p^{\prime \prime}(Q) q^{i}}{2 p^{\prime}(Q)+p^{\prime \prime}(Q) q^{i}-C^{\prime \prime}\left(q^{i}\right)} \\
0 \geq \frac{\partial q^{i}}{\partial q^{j}}>-1 \\
\text { if } C^{\prime \prime} \geq 0 \text { and if } p^{\prime \prime} \geq 0
\end{gathered}
$$

equilibrium : linear case

equilibrium : each firm's q^{i} maximizes its own profits, given other firms' output choices q^{j}
symmetric equilibrium : $q^{1}=q^{2}=\cdots=q^{J} \equiv q$
means that $Q_{-i}=(J-1) q$
so that (6) becomes

$$
\begin{equation*}
2 b q=a-c-b(J-1) q \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
q=\frac{a-c}{(J+1) b} \tag{11}
\end{equation*}
$$

implying

$$
\begin{equation*}
Q=\frac{J}{J+1} \frac{a-c}{b} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
p=\frac{a}{(J+1)}+\frac{J c}{(J+1)} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
p-c=\frac{a-c}{J+1} \tag{1}
\end{equation*}
$$

which means

$$
\begin{equation*}
\pi^{i}=(p-c) q^{i}=\frac{(a-c)^{2}}{(J+1)^{2} b} \tag{15}
\end{equation*}
$$

so that total industry profits are

$$
\begin{gather*}
\Pi=\frac{J}{J+1} \frac{(a-c)^{2}}{(J+1) b} \tag{16}\\
\frac{\partial \Pi}{\partial J}<0 \tag{17}
\end{gather*}
$$

