Bertrand Duopoly

prices are the strategic variables

quantity sold by firm 1: \(q^1(p^1, p^2) \)

\[
\pi^1 = p^1q^1(p^1, p^2) - C[w, q^1(p^1, p^2)]
\] (1)

prices chosen simultaneously

(Nash) equilibrium: a pair of prices \((p^1, p^2)\), such that \(p^1\) maximizes \(\pi^1\), given \(p^2\), and such that \(p^2\) maximizes \(\pi^2\), given \(p^1\)
“benchmark” case

i homogeneous output; i.e. firm 1’s product is a perfect substitute for firm 2’s

ii constant returns to scale: \(C(w,q) \equiv cq \), where \(c \) is some constant (which depends on input prices)

market demand: \(D(p) \) is the equation of the market demand curve for the homogeneous product

homogeneous product \(\rightarrow \) buyers always buy from cheapest source

implication

– Typeset by Foil\TeX – 2
demand for firm i’s product

if $p^1 > p^2$, then $q^1(p^1, p^2) = 0$

why? everyone buys from (cheaper) firm #2

if $p^1 < p^2$, then $q^1(p^1, p^2) = D(p^1)$

everyone buys from firm #1

if $p^1 = p^2$, then

$$q^1(p^1, p^2) = q^2(p^1, p^2) = \frac{1}{2}D(p^1) \quad (2)$$

(rule (2) is not essential)
Nash equilibrium

\[p^1 > p^2 > c \]

can’t be an equilibrium: firm #1 makes zero profits (since it has zero sales); given \(p^2 \), firm #1 can do better than that, by choosing some \(p' \) between \(c \) and \(p^2 \) (if \(c < p' < p^2 \), then firm #1 will get positive sales from charging the price \(p' \), and will make positive profits, since \(p' > c \))

similarly, \(p^2 > p^1 > c \) cannot be a Nash equilibrium

what about \(p^1 = p^2 > c \)?

can’t be an equilibrium
when $p^1 = p^2 > c$, firm 1’s profits are

$$\frac{1}{2} [p^2 - c] D(p^2)$$

by lowering its price very slightly, from p^2 to $p' = p^2 - \epsilon$, firm #1 lowers its profit margin very slightly, from $p^2 - c$ to $p' - c$

but this slight price reduction will more than **double** its sales: from $\frac{1}{2} D(p^2)$ to $D(p') > D(p^2)$

if ϵ is small enough (p' close enough to p^2), this change in strategy must increase firm 1’s profits, so that $p^1 = p^2 > c$ cannot be a Nash equilibrium
what’s left?

how about \(p^1 > p^2 = c \)?

also can’t be a Nash equilibrium: firm #2 gets all the sales, but has zero profits (since its price equals its average cost); given \(p^1 \), firm #2 can increase profits by raising its price from \(p^2 = c \) to some \(p' \) with \(p^1 > p' > c \); if \(p' < p^1 \) firm #2 will still get all the sales, but if \(p' > c \) firm #2 will now make a positive profit per unit sold.

clearly there can be no Nash equilibrium in which **either** firm charged a price below cost: the lower–price firm will make negative profits; it always could do better by charging some price above \(c \), which guarantees profits are 0 or positive.
the unique Nash equilibrium in this market is
\(p^1 = p^2 = c \)

if \(p^2 = c \), firm 1 makes zero profits by charging
a price of \(p^1 = c \); but it cannot do better than that:
any price above \(c \) gets it zero sales, and any price
below \(c \) gives it negative profits

very different results than Cournot: with
homogeneous output, and constant costs, a little
competition is the same as perfect competition as
long as the number of firms \(J \) in the market is
greater than 1, then the equilibrium price will be \(c \),
whether \(J \) is 2, or 3, or 1000