Bertrand Duopoly

prices are the strategic variables
quantity sold by firm $1: q^{1}\left(p^{1}, p^{2}\right)$

$$
\begin{equation*}
\pi^{1}=p^{1} q^{1}\left(p^{1}, p^{2}\right)-C\left[\mathbf{w}, q^{1}\left(p^{1}, p^{2}\right)\right] \tag{1}
\end{equation*}
$$

prices chosen simultaneously
(Nash) equilibrium : a pair of prices $\left(p^{1}, p^{2}\right)$, such that p^{1} maximizes π^{1}, given p^{2}, and such that p^{2} maximizes π^{2}, given p^{1}

"benchmark" case

i homogeneous output ; i.e. firm 1's product is a perfect substitute for firm 2's

ii constant returns to scale : $C(\mathbf{w}, q) \equiv c q$, where c is some constant (which depends on input prices)
market demand : $D(p)$ is the equation of the market demand curve for the homogeneous product
homogeneous product \rightarrow buyers always buy from cheapest source
implication

demand for firm i 's product

if $p^{1}>p^{2}$, then $q^{1}\left(p^{1}, p^{2}\right)=0$
why? everyone buys from (cheaper) firm \#2
if $p^{1}<p^{2}$, then $q^{1}\left(p^{1}, p^{2}\right)=D\left(p^{1}\right)$
everyone buys from firm \#1
if $p^{1}=p^{2}$, then

$$
\begin{equation*}
q^{1}\left(p^{1}, p^{2}\right)=q^{2}\left(p^{1}, p^{2}\right)=\frac{1}{2} D\left(p^{1}\right) \tag{2}
\end{equation*}
$$

(rule (2) is not essential)

Nash equilibrium

$$
p^{1}>p^{2}>c ?
$$

can't be an equilibrium : firm \#1 makes zero profits (since it has zero sales) ; given p^{2}, firm \#1 can do better than that, by choosing some p^{\prime} between c and p^{2} (if $c<p^{\prime}<p^{2}$, then firm \#1 will get positive sales from charging the price p^{\prime}, and will make positive profits, since $p^{\prime}>c$)
similarly, $p^{2}>p^{1}>c$ cannot be a Nash equilibrium
what about $p^{1}=p^{2}>c$?
can't be an equilibrium
when $p^{1}=p^{2}>c$, firm 1's profits are

$$
\frac{1}{2}\left[p^{2}-c\right] D\left(p^{2}\right)
$$

by lowering it price very slightly, from p^{2} to $p^{\prime}=$ $p^{2}-\epsilon$, firm \#1 lowers its profit margin very slightly, from $p^{2}-c$ to $p^{\prime}-c$
but this slight price reduction will more than double its sales : from $\frac{1}{2} D\left(p^{2}\right)$ to $D\left(p^{\prime}\right)>D\left(p^{2}\right)$
if ϵ is small enough (p^{\prime} close enough to p^{2}), this change in strategy must increase firm 1's profits, so that $p^{1}=p^{2}>c$ cannot be a Nash equilibrium

what's left?

how about $p^{1}>p^{2}=c$?
also can't be a Nash equilibrium : firm \#2 gets all the sales, but has zero profits (since its price equals its average cost) ; given p^{1}, firm \#2 can increase profits by raising its price from $p^{2}=c$ to some p^{\prime} with $p^{1}>p^{\prime}>c$; if $p^{\prime}<p^{1}$ firm \#2 will still get all the sales, but if $p^{\prime}>c$ firm \#2 will now make a positive profit per unit sold
clearly there can be no Nash equilibrium in which either firm charged a price below cost : the lower-price firm will make negative profits ; it always could do better by charging some price above c, which guarantees profits are 0 or positive
the unique Nash equilibrium in this market is $p^{1}=p^{2}=c$
if $p^{2}=c$, firm 1 makes zero profits by charging a price of $p^{1}=c$; but it cannot do better than that: any price above c gets it zero sales, and any price below c gives it negative profits
very different results than Cournot : with homogeneous output, and constant costs, a little competition is the same as perfect competition as long as the number of firms J in the market is greater than 1, then the equilibrium price will be c, whether J is 2 , or 3 , or 1000

