Gambles

$$
g \equiv\left(p_{1} \circ a_{1}, p_{2} \circ a_{2}, \ldots, p_{n} \circ a_{n}\right)
$$

means: g is a gamble, in which the outcome a_{1} will arise with the probability p_{1}, the outcome a_{2} will arise with the probability p_{2}, and so on
if, for example

$$
g^{1} \equiv(0.5 \circ 100,0.5 \circ 0)
$$

and

$$
g \equiv\left(0.2 \circ 100,0.8 \circ g^{1}\right)
$$

then g is a compound gamble, for which : with 20 percent probability you get $\$ 100$, and with 80 percent probability you get to play another gamble, in which you can win $\$ 100$ with probability 50 percetnt and 0 with probability 50 percent.

Reducing Compound Gambles to Simple Gambles

$$
\begin{aligned}
& g^{1} \equiv(0.5 \circ 100,0.5 \circ 0) \\
& g \equiv\left(0.2 \circ 100,0.8 \circ g^{1}\right) \\
& g^{\prime} \equiv(0.6 \circ 100,0.4 \circ 0)
\end{aligned}
$$

The gamble g^{\prime} is a simple gamble which is equivalent to the compound gamble g.

von Neumann - Morgenstern Expected Utility

if a person's preferences over compound gambles obey axioms G1-G6 in Jehle and Reny, then the person's preferences can be represented by an expected utility function $u(\cdot)$
shorthand : let U stand for the person's ranking of gambles
if she prefers gamble g (weakly) to gamble g^{\prime}, then we could write $g \succeq g^{\prime}$ - or $U(g) \geq U\left(g^{\prime}\right)$
[so U is defined over gambles, which are lists of payoffs a_{i}, and probabilities p_{i} with which the payoffs occur]
then the utility-of-wealth function $u(\cdot)$ is defined over values of wealth ; so lower-case u is just a function on levels of wealth
the utility-of-wealth function $u(\cdot)$ represents her preferences if
for any two gambles

$$
\begin{aligned}
g & \equiv\left(p_{1} \circ a_{1}, p_{2} \circ a_{2}, \ldots, p_{n} \circ a_{n}\right) \\
g^{\prime} & \equiv\left(p_{1}^{\prime} \circ a_{1}^{\prime}, p_{2}^{\prime} \circ a_{2}^{\prime}, \ldots, p_{N}^{\prime} \circ a_{N}^{\prime}\right)
\end{aligned}
$$

then

$$
g \succeq g^{\prime}
$$

if and only if

$$
\sum_{i=1}^{n} p_{i} u\left(a_{i}\right) \geq \sum_{i=1}^{N} p_{i}^{\prime} u\left(a_{i}^{\prime}\right)
$$

so, if the von Neumann-Morgenstern result applies, then, if

$$
g \equiv\left(p_{1} \circ a_{1}, p_{2} \circ a_{2}, \ldots, p_{n} \circ a_{n}\right)
$$

then

$$
U(g)=\sum_{i=1}^{n} p_{i} u\left(a_{i}\right)
$$

but here, monotonic transformations change things

$$
\text { if } u(a)=a \text { and if }
$$

$$
\begin{gathered}
g=(1 \circ 5) \\
g^{\prime}=(0.5 \circ 1,0.5 \circ 9)
\end{gathered}
$$

then

$$
U(g)=u(5)=5
$$

and

$$
U\left(g^{\prime}\right)=0.5(1)+(0.5) 9=5
$$

so that $U(g)=U\left(g^{\prime}\right)$

$$
\begin{aligned}
& \text { but if } \tilde{u}(a)=\sqrt{(u(a))}=\sqrt{a}, \\
& U\left(g^{\prime}\right)=0.5 \sqrt{1}+0.5 \sqrt{9}=2<U(g)=\sqrt{5} \approx 2.24
\end{aligned}
$$

Expected Value (and Expected Utility)

if

$$
g=\left(p_{1} \circ a_{1}, p_{2} \circ a_{2}, \ldots, p_{n} \circ a_{n}\right)
$$

then the expected value of any simple gamble g is

$$
E(g) \equiv p_{1} a_{1}+p_{2} a_{2}+\cdots p_{n} a_{n}
$$

risk-neutral : $u(E(g))=U(g)$ for any simple gamble g
risk averse : $u(E(g))>U(g)$ whenever g has any uncertainty
a risk lover : $u(E(g))<U(g)$ whenever g has any uncertainty

Risk Aversion

the following statements are all equivalent :

i the person is risk averse
$i i$ for this person, for a gamble g which has some uncertainty $g^{\prime} \succeq g$, where g^{\prime} is the outcome $E g$ with certainty
iii for this person, for a gamble g which has some uncertainty $u(E g)>U(g)$, if $U(g)$ is her overall expected utility from some gamble, and $u(\cdot)$ is her von Neumann-Morgenstern utility-of-wealth function
$i v$ for this person $u^{\prime \prime}(x)<0$, if $u(\cdot)$ is her von Neumann-Morgenstern utility-of-wealth function
v if you offer this person a fair bet, that is a bet which pays her b_{i} with probability π_{i}, where $\sum_{i} \pi_{i} b_{i}=0$, then she will reject the bet

