Gambles

$$g \equiv (p_1 \circ a_1, p_2 \circ a_2, \dots, p_n \circ a_n)$$

means : g is a gamble, in which the outcome a_1 will arise with the probability p_1 , the outcome a_2 will arise with the probability p_2 , and so on

if, for example

$$g^1 \equiv (0.5 \circ 100, 0.5 \circ 0)$$

and

$$g \equiv (0.2 \circ 100, 0.8 \circ g^1)$$

then g is a compound gamble, for which : with 20 percent probability you get \$100, and with 80 percent probability you get to play another gamble, in which you can win \$100 with probability 50 percent and 0 with probability 50 percent.

[–] Typeset by $\operatorname{FoilT}_{E}X$ –

Reducing Compound Gambles to Simple Gambles

 $g^1 \equiv (0.5 \circ 100, 0.5 \circ 0)$

 $g \equiv (0.2 \circ 100, 0.8 \circ g^1)$

 $g' \equiv (0.6 \circ 100, 0.4 \circ 0)$

The gamble g' is a simple gamble which is **equivalent** to the compound gamble g.

von Neumann – Morgenstern Expected Utility

if a person's preferences over compound gambles obey axioms G1-G6 in Jehle and Reny, then the person's preferences can be represented by an **expected utility** function $u(\cdot)$

shorthand : let U stand for the person's ranking of ${\bf gambles}$

if she prefers gamble g (weakly) to gamble g', then we could write $g \succeq g' -$ or $U(g) \ge U(g')$

[so U is defined over **gambles**, which are lists of payoffs a_i , and probabilities p_i with which the payoffs occur]

then the utility–of–wealth function $u(\cdot)$ is defined over values of wealth ; so lower–case u is just a function on levels of wealth

the utility–of–wealth function $\boldsymbol{u}(\cdot)$ represents her preferences if

for any two gambles

$$g \equiv (p_1 \circ a_1, p_2 \circ a_2, \dots, p_n \circ a_n)$$
$$g' \equiv (p'_1 \circ a'_1, p'_2 \circ a'_2, \dots, p'_N \circ a'_N)$$

then

$$g \succeq g'$$

if and only if

$$\sum_{i=1}^{n} p_i u(a_i) \ge \sum_{i=1}^{N} p'_i u(a'_i)$$

so, if the von Neumann-Morgenstern result applies, then, if

$$g \equiv (p_1 \circ a_1, p_2 \circ a_2, \dots, p_n \circ a_n)$$

then

$$U(g) = \sum_{i=1}^{n} p_i u(a_i)$$

– Typeset by $\mbox{FoilT}_{\!E}\!{\rm X}$ –

but here, monotonic transformations change things

if u(a) = a and if

 $g = (1 \circ 5)$

$$g' = (0.5 \circ 1, 0.5 \circ 9)$$

then

$$U(g)=u(5)=5$$

and

$$U(g') = 0.5(1) + (0.5)9 = 5$$

so that U(g) = U(g')

but if
$$\tilde{u}(a) = \sqrt{(u(a))} = \sqrt{a}$$
,

 $U(g') = 0.5\sqrt{1} + 0.5\sqrt{9} = 2 < U(g) = \sqrt{5} \approx 2.24$

Expected Value (and Expected Utility)

if

$$g = (p_1 \circ a_1, p_2 \circ a_2, \dots, p_n \circ a_n)$$

then the **expected value** of any simple gamble g is

$$E(g) \equiv p_1 a_1 + p_2 a_2 + \cdots + p_n a_n$$

risk-neutral : u(E(g)) = U(g) for any simple gamble g

risk averse : u(E(g)) > U(g) whenever g has any uncertainty

a risk lover : u(E(g)) < U(g) whenever g has any uncertainty

Risk Aversion

the following statements are all equivalent :

i the person is risk averse

ii for this person, for a gamble g which has some uncertainty $g' \succeq g$, where g' is the outcome Eg with certainty

iii for this person, for a gamble *g* which has some uncertainty u(Eg) > U(g), if U(g) is her overall expected utility from some gamble, and $u(\cdot)$ is her von Neumann–Morgenstern utility–of–wealth function

iv for this person u''(x) < 0, if $u(\cdot)$ is her von Neumann–Morgenstern utility–of–wealth function

v if you offer this person a fair bet, that is a bet which pays her b_i with probability π_i , where $\sum_i \pi_i b_i = 0$, then she will reject the bet