
GS/ECON 5010 section “B”’ Answers to Assignment 4 November 2011

Q1. What does the contract curve look like for a 2–person, 2–good exchange economy, with a

total endowment of E1 units of good 1 and E2 units of good 2, if the preferences of the two people

could be represented by the utility functions

u1(x11, x
1
2) = 100− 1

x11
− 1

x12

u2(x21, x
2
2) = 50− 1

x21
− 4

x22

where xij is person i’s consumption of good j? [The superscripts in the definition of u2 are the

person’s name, “2”, not “squared”.]

A1. An allocation (x1,x2), with xi >> 0, will be efficient if and only if the two people’s

marginal rates of substitution are equal, or

u11
u12

=
u21
u22

(1− 1)

where uij is person i’s marginal utility from good j.

Here, that means that
(x12)2

(x11)2
=

(x22)2

4(x21)2
(1− 2)

or
x12
x11

=
x22
2x21

(1− 3)

Since x22 = E2 − x12 and x21 = E1 − x11, equation (1− 3) can be written

x12
x11

=
E2 − x12

2(E1 − x11)
(1− 4)

which defines x21 as a function of x11.

Equation (1− 4) can be written

x12 =
E2x

1
1

2E1 − x11
(1− 5)

which defines an upward–sloping curve in the Edgeworth box. Equation (1−5) implies that x12 = 0

when x11 = 0, and that x12 = E2 when x11 = E1. So it goes through the corners of the Edgeworth

box. That means that there are no Pareto optima to worry about in which consumption of some

good by some person is zero.

The curve defined by (1− 5) lies everywhere below the diagonal in the Edgeworth box, since

person #1 has a stronger taste for good 1 than good 2, compared with the other person #2.



Q2. What are the allocations in the core of the following 3–person, 2–good economy?

Person i’s preferences can be represented by the utility function ui(xi1, x
i
2), where

u1(x11, x
1
2) = x11x

1
2

u2(x21, x
2
2) = x21x

2
2

u3(x31, x
3
2) = x31 + x32

and the endowment vectors of the three people are e1 = (3, 0), e2 = (1, 4), e3 = (2, 2).

A2. Note first that person #3’s marginal rate of substitution between the two goods equals

1, independent of her consumption bundle, since she regards the 2 goods as perfect substitutes.

So in any Pareto optimal allocation of the 2 goods among the 3 people, it must be true that

MRS1 = MRS2 = MRS3 = 1. Now person 1 and person 2 have

MRSi =
xi2
xi1

i = 1, 2 (2− 1)

so that in any Pareto optimal allocation, it must be true that x11 = x12 and x21 = x22.

Since the overall endowment of the two goods is E1 = 6 = E2, for an allocation to be Pareto

optimal, it must be of the form x1 = (a, a), x2 = (b, b), x3 = (c, c), with a + b + c = 6. If an

allocation is in the core, it must be Pareto optimal1. So the allocations in the core are of the form

{(a, a), (b, b), (c, c)}, with a + b + c = 6. What is needed is to find what restrictions on a, b and c

are imposed by the requirement that the allocation not be blocked by any coalition.

Now it must be true that c ≥ 2, because of the “individual rationality” constraint. Person #3

would block any allocation in which c < 2, by forming a 1–person coalition of herself. She can get

utility of 4 on her own, so that any core allocation must give her utility of at least 4.

But if c > 2, then the allocation could be blocked by a coalition of person #1 and person #2.

Suppose that c > 2, so that a + b < 4. #1 and #2 could form a coalition in which person #1

got (a, a) and person #2 got (4 − a, 4 − a), since their total endowments of the two goods are 4

of each. This new allocation {(a, a), (4− a, 4− a)} is just as good as {(a, a), (b, b)} for person #1,

and strictly better for person #2, if originally a+ b < 4. So any allocation {(a, a), (b, b), (c, c)}, in

which c > 2 (and in which a + b + c = 6) will be blocked by a coalition of person #1 and person

#2.

Therefore, in any core allocation, c = 2 : any allocation in which c < 2 would be blocked by

person #3, and any allocation in which c > 2 would be blocked by a coalition of person #1 and

person #2.

Now what range of values for a lead to allocations which cannot be blocked? To answer

that, consider what person #1 can do in a coalition with person #3. This coalition has a total

1 otherwise it could be blocked by a coalition of all 3 people



endowment of (5, 2). To get person #3 to join the coalition, person #1 must offer person #3 a

utility of at least 4. So if she forms a coalition with person #3, she’d choose x31 + x32 = 4. That

gives her a utility of

(5− x31)(2− x32) = (5− x31)(2− [4− x31]) = (5− x31)(x31 − 2) (2− 2)

Maximizing expression (2−2) with respect to x31 yields x31 = 3.5. So, if she were to form a coalition

with person #3, what person #1 would do is offer person #3 the consumption bundle (3.5, 0.5),

leaving herself with (5− 3.5, 2− 0.5) = (1.5, 1.5).

That means that we must have a ≥ 1.5 in any core allocation. If a < 1.5, then the al-

location can be blocked by a coalition of people #’s 1 and 3, and the allocation {x1,x3} =

{(1.5, 1.5), (3.5, 0.5)}.
Next, what range of values for b lead to allocations which cannot be blocked? To answer

that, consider what person #2 can do in a coalition with person #3. This coalition has a total

endowment of (6, 3). To get person #3 to join the coalition, person #2 must offer person #3 a

utility of at least 4. So if he forms a coalition with person #3, he’d choose x31 +x32 = 4. That gives

him a utility of

(6− x31)(3− x32) = (6− x31)(3− [4− x31]) = (6− x31)(x31 − 1) (2− 3)

Maximizing expression (2 − 3) with respect to x31 again yields x31 = 3.5. So, if he were to form a

coalition with person #3, what person #2 would do is offer person #3 the consumption bundle

(3.5, 0.5), leaving himself with (6− 3.5, 3− 0.5) = (2.5, 2.5).

That means that we must have b ≥ 2.5 in any core allocation. If b < 2.5, then the allocation can

be blocked by a coalition of people #’s 2 and 3, and the allocation {x2,x3} = {(2.5, 2.5), (3.5, 0.5)}.
So, so far, the restrictions on an allocation imposed by the possibility of blocking are :

{x1,x2,x3} = {(a, a), (b, b), (c, c)}, with c = 2, a ≥ 1.5, b ≥ 2.5 and a + b + c = 6. There is

exactly one such allocation, the allocation {(1.5, 1.5), (2.5.2.5), (2, 2)}. So the core consists of ex-

actly that one allocation. The blocking possibilities outlined above show that the core can’t be

any bigger than this one allocation. And the theorem that the competitive equilibrium is always

inside the core shows that the core can’t be any smaller than this one allocation.

Q3. What is the competitive equilibrium allocation for an exchange economy with a continuum

of people, where the preferences of a type–v person can be represented by the utility function

uv(x1, x2) = (x1)v(x2)1−v

where the taste type v is distributed uniformly over the interval [0, 1] (so that the fraction of people

with a taste type of v or less is just v), and where each person has the same endowment of goods,

e = (1, e2) ?



A3. First, what is the excess demand function of a type–v person? This person has Cobb–

Douglas preferences,

u(x1, x2) = xv1x
1−v
2 (3− 1)

so that her Marshallian demand function for good #1 is

xM (p1, p2, y) =
vy

p1
(3− 2)

Here her income is the value of her endowment, which is p1 + p2e2, since her endowment vector is

(1, e2). Substituting y = p1 + p2e2 into equation (3− 2), her demand function for good #1 is

xM (p1, p2, p1 + p2e2) = v[1 +
p2
p1
e2] (3− 3)

Adding up over all people in the economy, the total demand for good #1 is

XD
1 =

∫ 1

0

v[1 +
p2
p1
e2]dv = [1 +

p2
p1
e2]

∫ 1

0

vdv (3− 4)

Since v is the integral of v2/2, therefore

XD
1 =

1

2
[1 +

p2
p1
e2] (3− 5)

The aggregate endowment of good #1 is 1, since every person has the same endowment 1 (and the

total population is 1). Therefore, the excess demand for good 1 is

Z1 = XD
1 − 1 =

1

2
[
p2
p1
e2 − 1] (3− 6)

The market for good #1 will be in equilibrium if Z1 = 0, which implies then that

p1
p2

= e2 (3− 7)

Walras’s Law says that if Z1 = 0, then Z2 = 0. Since only relative prices matter, the equilibrium

prices for this exchange economy are any prices (p1, p2) for which p1/p2 = e2.

What is the equilibrium allocation? A type–v person, facing prices (p1, p2) with p1/p2 = e2,

chooses to consume (from equation (3− 3))

xv1 = 2v (3− 8)

Her consumption of the other good is

xv2 = (1− v)
p1 + p2e2

p2
= 2(1− v)e2 (3− 9)

You can check that this allocation is feasible :
∫ 1

0
xv1dv = 1 and

∫ 1

0
xv2dv = e2.



Q4. Give an example of a constant–sum (“zero–sum”) game which has exactly one Nash

equilibrium in pure strategies.

A4. Suppose that we want the (unique) Nash equilibrium outcome in the top left corner of a

2–by–2 strategic form payoff matrix. For simplicity, let the payoffs in this top left corner be (0, 0).

For player #1 to pick the top row (when player #2 picks the left column), we need the payoff in

the bottom left corner to be negative for player #1. Similarly, for player #2 to pick the left column

when player #1 picks the top row, we need the payoff in the top right corner to be positive for

player #1 (which means it’s negative for player #2).

Now just put the (0, 0) payoff in the bottom right corner, and we’re done : the fact that the

payoff for player #1 is positive in the top–right corner, and negative in the bottom–left corner, and

the fact that the matrix is zero–sum, ensure that the bottom–right corner is not a Nash equilibrium.

So, for example (
(0, 0) (1,−1)

(−1, 1) (0, 0)

)
will do.

Q5. Find all the Nash equilibria (in pure and mixed strategies) in the following strategic–form

two–person game.

a b c

A (4, 0) (2, 2) (2, 4)
B (6, 4) (12, 6) (1, 8)
C (5, 3) (3, 12) (0, 6)
D (8, 6) (6, 2) (1, 2)

A5. The strategy pairs (A, c) and (D, a) are both pure–strategy Nash equilibria : if player #1

plays A, then player #2 cannot increase his payoff by moving left from c to a or b, and if player

#2 plays c, then player #1 cannot increase her payoff by moving down to B, C, or D. [Similarly,

neither player wants to deviate unilaterally from (D, a).]

And these are the only pure–strategy Nash equilibria.

To find any mixed–strategy Nash equilibria might be complicated with a 4–by–3 payoff matrix.

But the following result is useful :

result : if strategy s of a player can be “crossed off” during any repeated elimination of

weakly dominated strategies, then strategy s will never be played with positive probability in any

mixed–strategy Nash equilibrium

Note that row C is strictly dominated by row B for player #1. So C is a strictly dominated

strategy, and will never be played with positive probability by player #1.



In the “reduced” payoff matrix obtained after crossing off row C, column b is weakly dominated

by column c. So we can cross off column b if we’re doing repeated elimination of weakly dominated

strategies.

Once column b is gone, row B is now weakly dominated by row D, so we can cross it off in an

iterated elimination of weakly dominant strategies.

Then the result above says that the only possible mixed–strategy Nash equilibria are those

in which player #1 puts positive probability only on strategies A and D, and in which player #2

puts positive probability only on strategies a and c.

Could there be a mixed–strategy Nash equilibrium in which these 4 strategies are each played

with strictly positive probability? When would player #1 be willing to mix between strategies A

and D? Only if they each gave the same expected payoff to her. If player #2 were to play column

a with probability β and column c with probability 1− β, the expected payoff to player #1 from

strategies A and D would be

π1
A = 4β + 2(1− β) (5− 1)

π1
D = 8β + (1− β) (5− 2)

so that player #1 will get the same expected payoff from both strategies A and D if and only if

β = 1/5.

When would player #2 be willing to mix between columns a and c? Only if they each gave

the same expected payoff to him. If player #1 were to play row A with probability α and row D

with probability 1− α, the expected payoff to player #2 from strategies a and c would be

π2
a = 6(1− α) (5− 3)

π2
c = 4α+ 2(1− α) (5− 4)

so that player #2 will get the same expected payoff from both strategies a and c if and only if

α = 1/2.

Therefore there is exactly one Nash equilibrium in mixed strategies, in which player #1 uses

the mixed strategy (0.5, 0, 0, 0.5), and player #2 uses the mixed strategy (0.2, 0, 0.8), where the

vectors are the probability weights on strategies A, B, C and D for player #1, and on strategies

a, b and c for player #2.


