Mathematics in Mesopotamia & Babylonia

The Fertile Crescent

 The first area of the world to move to an agricultural way of life was near where Africa, Europe, and Asia meet.

Why There?

- The "Fertile Crescent" is fertile, because rivers from all three continents drain into it, bringing rich nutrients to the soil as well as water.
- It was also in an area of moderate climate, perfect for growing crops.
- For those reasons it was also more heavily populated.

Math 1700 Mesopotamia & Babylonia

Mesopotamia

- The world's first great civilization arose in the Fertile Crescent.
 - This happened in particular in an area that is now part of Iraq.
 - This area is bounded by the Tigris and the Euphrates rivers.
 - The Greeks called it Mesopotamia, meaning "between the rivers."

Early Settlements

- The earliest known settlement in the Euphrates floodplain dates from before 5000 BCE. It is characterized by large villages and temples.
- Relatively rapid development is attributed to the use of irrigation.

Math 1700 Mesopotamia & Babylonia

Historical Sumer

 The known history of Sumer begins in 2900 BCE, with the invention of writing.

Cuneiform

- The Mesopotamian area was rich in clay and in reeds that grew on the river banks.
- They were combined to make a medium for writing.

Cuneiform, contd.

- Clay was formed into a slab, about the size of a human hand.
- The reed stalks were cut to make a stylus.
- The stylus was pushed into the wet clay in a variety of different ways to make recognizable marks, carrying meaning.

Cuneiform, contd.

- The clay tablets were left to dry in the sun, and became very durable.
- There are thousands of cuneiform tablets still in existence.
- Hence, much is known about the history of these settlements.

Sumerian Culture

- The Sumerians were very well organized and had a complex bureaucracy, ruled by the priests in the temples.
- All the major trades of pre-industrial times developed there.

The Downside of Sumerian Culture

- The trend to rapid urbanization and blight of the environment that followed was characteristic.
- Fertile soils were quickly depleted by over use.
- Over-irrigation led to salinization.
- The accumulation of wealth attracted raiders. The area has been a battleground ever since.

Math 1700 Mesopotamia & Babylonia

Babylonia

Babylonia

- Babylonia is a civilization that developed in Mesopotamia around 1800 BCE, succeeding the Sumerian civilization, which had collapsed by then.
- The Babylonians used the cuneiform system of writing on clay tablets with reed styluses.

Babylonian Interests

- The Babylonians had a complex and prosperous culture, and pursued many interests.
- Because of the durability of cuneiform tablets, much is known about their civilization.

Babylonian Astronomy

 Some of the earliest, reasonably reliable records of the positions of the stars and planets were made by Babylonians, who developed a complex system of recording them.

Mespotamian Numbers

 Throughout the Mesopotamian civilizations, from Sumer to Babylonia, a unique number system was used based on the number 60, not on the familiar base 10 used in most other cultures.

Sexagesimal Numbers

- In the sexagesimal, i.e. 60-based, system, there are different combinations of characters for each number from 1 to 59.
- Then the symbol for 1 is used again, but this time meaning 60.
 - The symbol for 2 also means 120. The symbol for 3 also means 180, etc.

A Place-Value System

- Compared to the Egyptians, who had totally separate symbols for 2 and 20 and 200 and 2000, etc., the Mesopotamian/Babylonian system used the same symbols over for the next higher level.
- Note that we do the same, but we place zeros behind them to indicate the level.

Two Characters Only

 Though there are 59 separate symbols for the numerals in a sexagesimal system, the Babylonian numbers are all written with only two different characters, but put together in different combinations.

Output Sector A and a sector a sec

1 Y	יז ≺۲	21 ≪ Y	31 ₩ 7	41 Æ T	51 🍂 T
2 TY	12 ∢ ĩ Υ	22 ≪ T Y	32 ₩ 1 1	42 X IY	52 🔏 🕅
3 777	13 🗸 🎹	23 🕊 🏋	33 🗮 🕅	43 🗶 🎹	53 Am
4 🍄	14 ⊀₩	24 🕊 🍄	34 ⋘₩	44 🏼 🏹	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5 ₩	15 ⊀₩	25 ₩₩	₃ ₩₩	45 ₺₺	54- 5 4
∘ ₩¥	16 ≺∰	26 ≪₩	36 ₩₩	46 🏼 👯	55-52-11 2 AGREE
7 🐺	17 🛠 🐯	27 🛠 🐯	37 ₩ 🐯	47 🗶 🐯	™-5,2×111 ,5788
₀ ₩	18 ∢₩	28 ≪ 🏶	38 ₩ 🛱	48 - 2 ₩	57 - 🛠 🌱
9 퐦	19 ∢∰	29 ≪₩	39 **** #	49 2 1	58 - 🛠 👯
10 1	20 11	70 14	40 44		. A #

What comes after 59?

- 60 in the sexagesimal number system is the basic unit at the next place value.
- So it looks just like
 1.
- That is, $60 = 1 \times 60$

Example:

 A 9 times multiplication table.

Why choose a base of 60?

- Most cultures have number systems based on 10, or perhaps 5, related to the digits on our hands.
- But 10 is a poor choice for dividing evenly into parts.
- It is only divisible by 1, 2 and 5.

Factors of 60

- The number 60 can be evenly divided by many more smaller numbers:
- 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30.
 Exactional parts are much easier to
- Fractional parts are much easier to express exactly.

Fractions

- Any unit can be divided into parts of a lower place value, by dividing it by 60.
- ♦ Just as:
 - -1 minute = 60 seconds
 - ½ of a minute = 30 second
- Seconds is the next lower division of time after minutes.

The Sexagesimal System Today

- We still use the 60-based counting system in two places
 - Keeping time in hours, minutes, and seconds.
 - Measuring angles in degrees, minutes and seconds.

Why?

- Time-keeping and detailed astronomical observation came from the Babylonians.
- Greek science made use of Babylonian data and kept their number system for that purpose.

Place Value, with Place Holder

- In our decimal base system, we use the same numerals over and over again to mean numbers of different sizes.
 - But we can tell which size is intended by the use of zeros and decimal places.
 - E.g., 27900 is bigger than 279
 - 98.6 is smaller than 986

Place Value, but No Place Holder In the The number 85 (as we write it) is written as 1x60 + 2x10 + 5Mesopotamian/ = Babylonian | | | | < `V`V The number that we write as 1 5/12 is written as 1 + 25/60 = are 60 times 1 + (2x10 + 5)/60.This also appears as

Ambiguous in principle, but rarely in practice

- Because the orders of magnitude are separated by factors of 60, there was rarely confusion in the early centuries.
- But ultimately, this was a severe drawback in the system, as society became more complex.

a & Babylonia