Numbers and

Counting

1/249

\qquad
\qquad
\qquad
SCINATS 1730, III: \qquad

Number

\qquad

- The fundamental abstraction. \qquad
- There is archaeological evidence of counters and counting systems in some of the earliest of human cultures. \qquad
- In early civilizations, counting and measuring became necessary for administration.
\qquad
\qquad
SCINATS 1730. II \qquad

Numbers and Agriculture

- Keeping track of the amount of land allocated to a farmer, the quantity of the harvest, and any taxes or duty to be paid required a welldeveloped system of measuring and counting.

Scmats 1780, ill
\qquad

Numbers are abstractions

- It is something to know that three sheep plus two sheep always equals five sheep.
- Or that three urns and two urns are five urns.
- It is a big step to realize that 3 of anything plus 2 more of them makes 5 of them, or, that $3+2=5$.
- The pure numbers are abstractions.
\qquad
\qquad
\qquad
\qquad
\qquad
SCINATS 1730, III
\qquad

Contention

Only a civilization that has a welldeveloped written number system and \qquad has discovered rules for manipulating those numbers has the chance of moving \qquad on to science.
SCINATS 1730.,IIM
SCINATS 1730.,IIM
\qquad
\qquad
\qquad

A look at the number systems and rules of arithmetic of two of the great ancient civilizations:
\qquad
\qquad
\qquad

- Egypt
- Babylonia

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Egypt

- Egypt is one of the world's oldest civilizations. \qquad
- The "Ancient period" was from about 3000-300 BCE, during which this \qquad civilization had agriculture, writing, and a number system. \qquad
\qquad
SCINATS 1730.II
\qquad

The Gift of the Nile

- The settled area of Egypt is a narrow strip of land along the shores of the Nile River.
- Egypt would not be possible without the waters of the Nile.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

An insular, protected country

- Because of Egypt's isolation from possible invaders, it was able to develop into a stable, prosperous country through agriculture
\qquad
\qquad
\qquad
\qquad
\qquad

```
SCINATS 1730, III
```

\qquad

The Predictable Nile

\qquad

- The Nile river flooded every year in July.
- The floods provided rich nutrients and silt that made very productive soil. \qquad
\qquad
\qquad
SCINATS 1730. UII
\qquad

Farmers and Scribes

- Egypt subsisted on organized and centralized farming in the area flooded annually by the Nile.
- Tracking and managing the allocation of land required extensive record-keeping, and written language.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hieroglyphics

- Egypt
developed a
pictorial writing
system called
hieroglyphics.
- (This is from the
entrance to the
Great Pyramid at
Giza.)

Ceremonial

- Hieroglyphics were used for permanent messages
- Some were carved inscriptions on
monuments and
buildings.
- Others were painted on the inside walls of buildings and tombs.

SCINATS 1730, H1
\qquad

Hieratic

- For everyday
use, a script form
of hieroglyphics
evolved called
hieratic.
- This is from a
letter written
about 1790 BCE.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
SCNATS 1730, III \qquad

Papyrus Rolls

- Egyptians developed a sort of paper made from the pith of the papyrus reeds growing on the side of the Nile.
- These were made into long strips and then rolled and unrolled for use.

The Cult of Death

- Much attention was paid to preparation for death and the life that would follow.
- Pharaohs and other important officials spent great sums on their tombs and the preparation of their bodies
(mummification) for entry into the afterlife.
\qquad

The Pyramids

\qquad
\qquad
\qquad

- Most famous were the pyramids, built as tombs for great pharaohs. \qquad
- The great pyramids contain as many as $2,300,000$ limestone blocks, each weighing 2.5 \qquad scmatstannes

Practical Science

- Topics that would later be part of science were studied and mastered for practical ends:
Anatomy: for embalming, mummifying \qquad
Chemistry: for making cosmetics, paints, dyes, and food preservatives \qquad
Astronomy: for establishing a calendar for agriculture \qquad
sematis lizo .in

Egyptian Astronomy

- The flooding of the Nile is so regular that it coincides with an astronomical event. \qquad
- When the star Sirrius appears in the sky just before dawn, the flooding of the Nile \qquad was imminent.

\qquad
\qquad
\qquad

Egyptian Calendars

- The beginning of the year was when the Nile was predicted to flood, July on our calendars.
- Like most calendars, there was some coordination of the cycle of the sun and the moon. \qquad
\qquad
\qquad

The Earliest Egyptian Calendar

- This calendar had 12 months, alternating 29 days and 30 days.
- The actual cycle of the moon is about $291 / 2$ days
- The "year" was therefore 354 days.
- So, every 2 or 3 years, an additional month was added.

SCINATS 1730. III
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Second Egyptian

 Calendar- This had a 365-day year.
- All 12 months were 30 days long. \qquad
- Then an extra 5 days was added at the end. \qquad
- This calendar worked better for tracking the solar year, but the coordination with the moon cycle was lost.
\qquad

The Seasons

- The year was divided into three seasons, as suited what was important:
\qquad

Inundation (the flooding of the Nile)
Emergence (of the crops)
Harvest

\qquad
\qquad
SCINATS 1730. II

Egyptian Numbers

- A system of writing numbers emerged from hieroglyphics.
- A number was written as a picture of its components. \qquad
- The base of the system was 10 , like ours, but the notation was completely different. \qquad
\qquad
SCINATS 1730, III \qquad

The Notation System

- Each power of 10 had a separate symbol.
- The order in which the symbols of a number was written was not important; i.e. no place value.

```
SCINATS 1730, III
```


Examples of Written

 Numbers:| | 14t9 |
| :---: | :---: |
| 99 | 999 |
| คกู๊ | inn |
| 0010 010 | |
| 276 | 4622 |

SCINATS 1730, III

Fractions

\qquad
\qquad
\qquad
All fractions represented a single part of a larger whole e.g. $1 / 3$ and $1 / 5$, as above. (There was an exception made for $2 / 3$.)

- The symbol for a fraction was to place an open mouth above the denominator. \qquad
scinats 1730, III
\qquad

Hieratic numbers

- The number system was cumbersome, so a
shorthand version was developed for use in Hieratic.
- But the Hieratic version had even more symbols and still no place value.
- 1, 2, 3, ... 10, 20, 30, 100, 200, 300, ... all were separate symbols.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
SCNATS 17730. III \qquad

Egyptian Arithmetic

- Despite the cumbersome notation system, the Egyptians developed an extraordinarily efficient method of doing arithmetical calculations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiplication and Division by Doubling

- Calculations were done by a series of steps requiring doubling numbers, and then adding up some of the results.
- Knowledge required: how to add, and \qquad how to multiply by two.
Not required: how to multiply by 3, or 4 , or 5, or any other number.

```
SCINATS 1730, mlm
```


Example: 13×24

- In two columns, write the number 1 in the left column and one of the above numbers in the right column.
- Generally choosing the larger number to write down works best.
- In this example, the 13 will be called the "other" number.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: 13×24, contd.

- Double each of the numbers in the first line, and write the result in the next line.
Do the same to the
numbers in the new line.
Continue until the
number in the bottom left
position is more than
one half the other
number (in this case,
13).

SCinats 1730, III

Example: 13×24, contd.

- Now, place a tick mark by numbers in the left column that add up to the other number.
- The best procedure is to start from the bottom.
- Here 8, 4 and 1 are chosen, because $8+4+1=13$.

SC NATS 1730. III
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: 13×24, contd.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: 13×24, contd.

- This works because $(1 \times 24)+(4 \times 24)+$ $(8 \times 24)=$
$(1+4+8) \times 24=$
13×24.

1	24	24
2	48	
4	96	96
8	192	192
		312

SCNATS 1730:III

Now consider a more complicated example

- This works well for larger numbers too, and compares favourably with our manual system of multiplication.
- Try the numbers 246×7635.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: 246×7635,

 contd.- Tick off the entries in the left column that add to 246 , write the corresponding right column entries off to the side and add them up.

Division via Doubling

- Use the same process for division, but go about it somewhat differently.
- This time you double the divisor successively, stopping just before the number reached would be greater than the dividend.
Terminology: For $100 \div 25=4,100$ is the dividend, 25 is the divisor, and 4 is the quotient. \qquad

```
SCNATS 1730,.II
```


Example: $300 \div 14$

- In two columns, write the number 1 in the left column and the divisor in the right.
- Now, double the numbers in both columns until the last entry on the right is more than half of the dividend.
- Here, the last entry is 224 , since doubling it gives more than 300 .

1	14
2	28
4	56
8	112
16	224

```
SCNATS 1730, II
```

```
SCNATS 1730, II
```


Example: $300 \div 14$

- Place tick marks beside the entries in the right column that add up as close as possible to the close as possible
dividend, without exceeding it
Then copy the numbers in the left column on the in the left column on the
same line as the ticks same line as the ticks
into a separate column and add them up.
- This gives the quotient 21.

```
SCINATS 1730, III
```

SCINATS 1730, III

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: $300 \div 14$

- As a check, add up the ticked numbers in the right column.
- This gives 294.
- So 14 goes into 300 a full 21 times, with a remainder of 6 .
- The division process does not give exact answers but it is good enough:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
SCANATS 1780, III \qquad

An arithmetic system for practical use

- The main problems that a scribe would have to solve were such things as determining the area of a plot of land assigned to a farmer - a multiplication problem.
- Or dividing up some commodity into equal portions - a division problem.

```
SC/NATS 1730,III
```

\qquad

Babylonia

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Babylonia

- Babylonia is a civilization that developed in Mesopotamia around 1800 BCE, succeeding the Sumerian civilization, which had collapsed by then. \qquad
- The Babylonians used the cuneiform system of writing on clay tablets with \qquad reed styluses.

```
SCINATS 1730.11
SCINATS \(1730, \ldots 1\)
```

\qquad
\qquad

Babylonian Interests

- The Babylonians had a complex and prosperous culture, and pursued many interests.
- Because of the durability of cuneiform \qquad tablets, much is known about their civilization. \qquad
\qquad
\qquad

Babylonian Astronomy

- Some of the earliest, reasonably reliable records of the positions of the stars and planets were made by Babylonians, who developed a complex system of recording them.

SCINATS 1730, III

Mespotamian Numbers

- Throughout the Mesopotamian civilizations, from Sumer to Babylonia, a unique number system was used based on the number 60, not on the familiar base 10 used in most other cultures.

\qquad
\qquad
\qquad

Sexagesimal Numbers

- In the sexagesimal, i.e. 60-based, system, there are different combinations of characters for each number from 1 to 59. \qquad
- Then the symbol for 1 is used again, but this time meaning 60. \qquad
The symbol for 2 also means 120 . The symbol for 3 also means 180, etc. \qquad

```
SCINATS 1730, III
```

\qquad

A Place-Value System

- Compared to the Egyptians, who had totally separate symbols for 2 and 20 and 200 and 2000, etc., the
Mesopotamian/Babylonian system used the same symbols over for the next higher level. \qquad
- Note that we do the same, but we place zeros behind them to indicate the level. \qquad
\qquad

Using the marsh reeds as

 a stylus
\qquad
\qquad
\qquad
\qquad
\qquad

- Mesopotamian writing was done on wet clay tablets, by pushing the end of a reed stalk into the clay. \qquad
SCNATS 1730: III \qquad

Two Characters Only

- Though there are 59 separate symbols for the numerals in a sexagesimal system, the Babylonian numbers are all written with only two different characters, but put together in different combinations. \square \qquad
\qquad
SCINATS 1730, III
\qquad

Vertical - the Character

 for 1- If the reed is turned with the thick end up and the pointed end down, it is the symbol for 1.
\qquad
\qquad
\qquad
\qquad
\qquad
SCNATS 1730, III
\qquad

The Numbers from 1 to 9 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
SCNATS 1730. III
\qquad

Horizontal - the Character for 10

- If the reed is turned with the thick end to the right and the pointed end to the left, it is the symbol for 10 .

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Counting by Tens:
$10,20,30,40,50$

\qquad
\qquad
\qquad

The Numbers from 1 to 59

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What comes after 59?

> - 60 in the
> sexagesimal number
> system is the basic
> unit at the next place
> value.
> - So it looks just like 1 .
> That is, $60=1 \times 60$

Example:

- A 9 times multiplication
table.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
SCINATS 1730, III
\qquad

Why choose a base of 60?

- Most cultures have number systems based on 10, or perhaps 5, related to the digits on our hands.
- But 10 is a poor choice for dividing \qquad evenly into parts.
It is only divisible by 1,2 and 5. \qquad
\qquad
SCINATS 1730,111 \qquad

Factors of 60

- The number 60 can be evenly divided by many more smaller numbers: \qquad
- $1,2,3,4,5,6,10,12,15,20,30$.
- Fractional parts are much easier to \qquad express exactly. \qquad
\qquad
\qquad

Fractions

- Any unit can be divided into parts of a lower place value, by dividing it by 60.
\qquad
- Just as:

1 minute $=60$ seconds \qquad
$-1 / 2$ of a minute $=30$ seconds

- Seconds is the next lower division of time after minutes.

SCINATS 1730; III

The Sexagesimal System

 Today- We still use the 60-based counting system in two places \qquad
Keeping time in hours, minutes, and seconds. \qquad
Measuring angles in degrees, minutes and seconds. \qquad
\qquad

```
Scmats 1730.1IL
```

\qquad

Why?

- Time-keeping and detailed astronomical observation came from the Babylonians.
\qquad
\qquad
\qquad
- Greek science made use of Babylonian data and kept their number system for \qquad that purpose.

Place Value, with Place Holder

- In our decimal base system, we use the same numerals over and over again to mean numbers of different sizes.
But we can tell which size is intended by the use of zeros and decimal places.
E.g., 27900 is bigger than 279
- 98.6 is smaller than 986

Place Value, but No Place Holder

- In the

Mesopotamian/
Babylonian
system, numbers
that are 60 times
larger or 60 times smaller are all written the same way

The number 85 (as we write it) is written as $1 \times 60+2 \times 10+5$
= \qquad
The number that we write as $15 / 12$ is written as $1+25 / 60=$ $1+(2 \times 10+5) / 60$

This also appears as

Ambiguous in principle, but rarely in practice

- Because the orders of magnitude are separated by factors of 60, there was rarely confusion in the early centuries.
- But ultimately, this was a severe drawback in the system, as society became more complex.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

