The Renaissance

Awakening from the intellectual slumbers of the Middle Ages.

Beginnings of Mechanization:
The weight-driven clock

- Keeping time had importance in the monasteries.
- Necessary to know the correct time for prayers, etc.
- Sun dials were hopeless in cloudy northern Europe.
- Water clocks froze in the winter.

The weight-driven clock

- A mechanical clock that moved by the force of a falling weight would work.
- Except:
- Any falling object picks up speed as it falls.
- Even if it is attached to a rope wound around an axis.
- Hence, a weight-driven clock would never keep correct time.

```
SC/NATS 1730, XI

Solution: The verge and foliot

A truly ingenious solution was an
escapement mechanism to start and
stop the falling weight over and over.
stop the falling weight over and over.
A metal rod (the verge) hangs vertically with two extending tabs set at the top and bottom of the verge slightly more than \(90^{\circ}\) apart, where they engage the teeth of a gear.
The foliot is a weighted bar that swings back and forth, pushed by the tabs as they strike the gear teeth.

A complex weight-driven clock

Reconstruction of the 14th century Turret Clock from
Dover Castle, with Verge and Foliot Escapement.


SC/NATS 1730, XI

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Printed Block Books}
\(\qquad\)

A means of printing any written material mechanically would be in demand.
Mechanical printing was known in China for at least 1000 years. But the method required making a woodcut of an entire page (in mirror image), then inking the woodcut, then applying it to a piece of paper.

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
SC/NATS 1730, XI \(\qquad\)

Printing from Movable Type
- Some "block books" were printed in Europe in \(\qquad\) the \(15^{\text {th }}\) century.
- But the process was cumbersome, and error
\(\qquad\) prone.
- A single mistake on one page required that the entire page be re-carved.
- A method was needed to assemble a page, letter by letter. \(\qquad\)
SC/NATS 1730, XI

\section*{Gutenberg's Printing Press}
- Johann Gutenberg (1400-1468)
- Goldsmith from Mainz, Germany.
- Found a method of manufacturing individual letter slugs (that print the letter) of a uniform height so they could be lined up on a bed, inked, and a sheet of paper pressed against them to print a page.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Gutenberg's matrix}

Gutenberg's trick was to use the same mould for all letter slugs, but placing a different letter impression on the end to make different letters.
A molten lead alloy is poured into a matrix with the letter impression on the end, held together with a firm spring.


The matrix adjusts to the width of
the letters desired.
- Wide for "M", narrow for " T ", etc.

SC/NATS 1730, XI

\section*{The Bed of the Press}

The desired letters for a page are then arranged and lined up on a flat bed, secured in place and inked.
A sheet of paper is
loaded into a frame held
above the bed and then pressed onto the inked letters with a forceful screw press.

SC/NATS 1730, XI

\section*{The finished product}
quamapitali pbaurunt. De nguo пй loquaz totamento qì quautif nō tubiun fite
 yitraing litteie ruidit. por nute nü

 fonte quemouarft. Prmauito zae moitre qia alunano it dyto muntus
The printed page can contain any text whatsoever that can be written in Latin letters.
When sufficient copies are made, the letter slugs are removed and sorted ready for another page to be composed.

A \(16^{\text {th }}\) century print shop


Printing was immensely successful. In the 50 years from 1450 to 1500 more than 10 million volumes were printed.

SC/NATS 1730, XI

\section*{Printing changed the world}

The character of education, general knowledge, the dissemination of information, and all the infrastructure of civilization changed
dramatically with the invention of printing

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{The Gutenberg Bible of 1455}

This is such a major event its date should be remembered.

Therefore remember 1455, the year of the printing of Gutenberg's
42-line Bible
- This is the third of the eight dates you must remember.

SC/NATS 1730, X]


SATS 1730, XI
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Influence of Printing on Science
- More texts available, to a wider audience.
- Publishing scientific discoveries became the norm. \(\qquad\)
- Interest in new knowledge (e.g., from exploration).

\section*{The woodcut}

Soon after the invention of printing with movable type, the woodcut was invented, providing a method of printing illustrations in a book.
This was of major benefit to biology, where illustrations of animals and plants could be compared to the real things. Especially the "Herbals," pharmaceutical texts on preparing medicines from wild growing medicin
The illustration here is from Otto The ilustration here is from Otto
Brunfels'L ivivug Portiails of Plants,
Brunfe
1530.


SC/NATS 1730, x]


Renaissance Illustrations of Previously "Unknown" Animals


SC/NATS 1730, XI

The Revival of Learning \(\qquad\)


Started with the \(12^{\text {th }}\) century translation project.
Translated works formed basis of curriculum at medieval universities. In the \(15^{\text {th }}\) century Byzantine manuscripts were imported into Western Europe \(\qquad\)

\section*{Humanism}
- Replaced theology in status. \(\qquad\)
- Relations of people in society.
- Activity: reworking Classical literature.
- Rebellion against Scholasticism.
- Worshipped remote past.

\section*{Early Humanism}

Manuel
Chrysoloras came to Italy in 1397 from Byzantium.
- Taught Greek in Italy.
- Sources dried up
after 1453.


Ptolemy's Geography not known before 1406 when brought from Constantinople.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Printing of Ancient Scientific} Classics
- Early printing was of very old texts: \(\qquad\)
- Bible, theology, law, medicine
- Few contemporary works
- Few scientific works
- Need for Latin translations
- Very few Western Europeans literate in Greek even into the \(16^{\text {th }}\) and \(17^{\text {th }}\) centuries.
- Greek science had to be translated into Latin.
- Among the first to be translated:
- Euclid
- Medical works: Hippocrates, Dioscorides, Galen, etc.

Scientific Atmosphere in Early Renaissance
- Little interest in science among humanists \(\qquad\)
- Had to wait for translations from Greek
- Scholasticism gave way to Empiricism
- Closer study of nature became the norm.

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Engincering marvels


Filippo Brunelleschi (1377-1446)
- Renaissance Man
- Built Dome of cathedral in Florence.
\(\qquad\)

\section*{Perspective in Architecture}

Brunelleschi built
churches with
perspective tricks to make them grander
- The Church of San

Lorenzo in Florence
looks longer than it is
- Popularised perspective in art and architecture.


SC/NATS 1730, XI
27

Perspective in art \(\qquad\)


Leone Battista Alberti (1404-1472)
- Discovered mathematical laws of perspective.

Albrecht Dürer of Nuremberg (1471-1528)
Used Alberti's analysis to portray the proportions of human
body accurately by age and sex.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Leonardo da Vinci}

\section*{1452-1519}

Genius in some areas,
barely functioning in others
- Small artistic output
- Intense working style and attention to detail
- Very secretive


SCINATS 1730, X]

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Leonardo da Vinci


Perspective and realism in art
Worked out principles of perspective
Studied physiology, embryology
SC/NATS 1730, x]
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Practical Arts in the \(16^{\text {th }}\) century

- Greatly advanced by the printing of technical manuals.

Practical Arts in the \(16^{\text {th }}\) century \(\qquad\)

- Waterwheel operating mechanical bellows for a blast
furnace.
- From Vanocchio Biringuccio (1460-1539), Pirotechria (1540).
\(\qquad\)
\(\qquad\)

Practical Arts in the \(16^{\text {th }}\) century

\(\qquad\)
\(\qquad\)

Agricola (1490-1555)
- (George Bauer)
- De re Metallica (1550)

SC/NATS 1730, XI

\section*{Medicine}
- Medicine followed the teachings and practices of \(\qquad\) the ancient authorities, Hippocrates, Galen, Avicenna. \(\qquad\)
- Renaissance physicians began to throw off blind adherence to authority in favour of direct observation and new theories.

An anatomy
demonstration from the \(15^{\text {th }}\) century.

The professor reads from the text, while the demonstrator (surgeon) displays the appropriate organs.

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Paracelsus \(\qquad\)
\(\qquad\)
- Actual name: Aureolus

Philleppus Theophrastus
Bombastus von Hohenheim
Founded Iatrochemistry, i.e medical chemistry
- Curing diseases with specific
drugs, instead of curing the
body as a whole.


SC/NATS 1730, XJ

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{De Fabrica}
- Published On the Fabric of the

Human Body, in 1543.
- Note this date. This is the fourth date to remember.
- An illustrated anatomy text.
- Raised biological observations to new level.
Artist for book probably from school of Titian.

SC/NATS 1730, XI

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Renaissance transportation:
Overland
- Became more extensive as landlocked states developed. \(\qquad\)
- Horses made individuals more mobile.
- Farmers could get produce to market. \(\qquad\)
- Heavy loads, e.g. artillery, a problem.
- Roads virtually non-existent. \(\qquad\)
- Wagons
- 2-wheeled carts had limited capacity. \(\qquad\)
4-wheeled wagons hard to manoeuvre, jolted.
Solutions: the movable forecarriage, suspension systems.

Shipbuilding in the Renaissance
- Existing styles: \(\qquad\)
- Sewn planking in India and Arab countries
- Better flexibility, allowed beaching. \(\qquad\)
- Iron nails on a frame, used in Europe and China
- Stronger for ocean travel \(\qquad\)
- Larger construction
- Problem of rust \(\qquad\)
\(\qquad\)

The Age of Exploration
- Motivation
- Ottoman Empire closed overland route to Orient after 1453.
- But desire for Oriental spices was established.

The Problem of Navigation: Latitude:


Navigation by stars started around 1480 with quadrant
- Only useful for latitude, hard to use at sea, impractical near equator,
impossible below it.
SC/NATS 1730, X]

The Problem of Navigation: Longitude

- Longitude virtually insoluble
- Best method: Dead Reckoning

Portolan
Charts
- For navigating at sea near enough to the cost to sight headlands.

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
SC/NATS 1730, XI
46

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

The Caravel and the Carrack
- European innovation
- Square and Lateen sails on same ship
- Sternpost rudder
- Stable in high seas, manoeuvrable in adverse winds


SC/NATS 1730, XI

Columbus \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Christopher Columbus, 1451-1506
- Sailed for the new world in 1492
- Used caravels and carracks. \(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)```

