
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$

Woolsthorpe Manor

- Newton was slated to take over family estate and manage a farm, but was obviously too interested in books and study.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$

Newton discovered the world of mathematics and natural philosophy

- After finishing his BA, Newton planned to stay on at Cambridge for further $\qquad$ study.
- In his last years at Cambridge as an $\qquad$ undergraduate, Newton had become very
$\qquad$ philosophy (Descartes, etc.), in
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Newton's Annus Mirabilis

- Newton's "miracle year," 1666
- A date to remember. This is the fifth date you must remember in this course.
- During the plague, Newton returned home, thought about his new interests and made his most original insights.

3 Major Insights of 1666


- Light

Calculus



## Light

- Light one of the great mysteries.
- Magical nature
- Connected with the Sun, with fire, with vision.
- Colour thought of as a quality, e.g. blueness. $\qquad$
- Mathematical or mechanical treatment seemed impossible.
- Descartes believed colours due to the spin of light particles.
$\qquad$
$\qquad$

- Newton undertook to investigate using a triangular prism
- Concluded that coloured light is simple
- There are particles of blue light, particles of red light, etc.
- White light is a mixture of coloured lights

$\qquad$


## Light as

Particles

- Particles, not waves because light rays move in straight lines.

- The diagram is Newton's illustration of what light waves would do, passing through a small opening.
$\qquad$ containing his New Theory about Light and Colors: sent by the Author to the Publisher from Cambridge, Febr. 6. 1671/72; in order to be communicated to the R. Society.

Sir,
To perform my late promise to you I shall without further ceremony acquaint you that in the beginning of the Year 1666 (at which time I applyed my self to the grinding of Optick glasses of other figures than Spherical) । procured me a Triangular glass-Prisme, to try therewith the celebrated Phænomena of Colours.And in order thereto having darkened my chamber, and made a small hole in my window-shuts, to let in a convenient quantity of the Sun's light, I placed my Prisme at his entrance, that it might be thereby refracted to the opposite wall. It was at first a pleasing divertisement, to view the vivid and intense colours produced thereby; but after a while applying my self to consider them more circumspectly, I became surprised to see them in an oblong form; which, according to the received laws of Refraction, I expected should have been circular...

## The Calculus

- Concerns quantities that change over time (or space).
- Example: If the speed of a falling body changes constantly, how fast is it going at any given moment?
- According to Zeno, it is not going anywhere $\qquad$ in a fixed instant.
- speed = velocity $=$ (distance travelled)/(time used) $=\mathrm{d} / \mathrm{t}$
- In any instant, $\mathrm{t}=\mathrm{o}, \mathrm{d}=\mathrm{o}$
- What is $\mathbf{0} \mathbf{0}$ ?


## Average Velocity

- Can be expressed as the total distance divided by the total time.
- Example:
- A car trip from Toronto to Kingston takes 3 hours and the distance is 300 km .
- The average speed of the car is $300 \mathrm{~km} / 3 \mathrm{hrs}=100 \mathrm{~km} / \mathrm{hr}$.
- This is the average speed, though the car may have sped up and slowed down many times.


## Instantaneous velocity

- What is the car's speed at any given moment?
- What does that number on the speedometer really mean? Newton's definition:
- Instantaneous Velocity =
 the Limit of Average Velocity as the time interval approaches zero.


## Smaller and smaller time intervals

- Suppose on a trip to Kingston along the 401, the car went 50 km in the $1^{\text {st }}$ hour, 100 km in the $2^{\text {nd }}$ hour, and 150 km in the $3^{\text {rd }}$ hour.
- The total time remains 3 hours and the total distance remains 300 km , so the average speed for the trip remains $100 \mathrm{~km} / \mathrm{hr}$.
- But the average speed for the $1^{\text {st }}$ hour is 50 $\mathrm{km} / \mathrm{hr}$; for the $2^{\text {nd }}$ is $100 \mathrm{~km} / \mathrm{hr}$; and for the third is $150 \mathrm{~km} / \mathrm{hr}$.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Still, the problem of 0/0

- As the time intervals get smaller, a closer approximation to how fast the $\qquad$ car is moving at any time is still expressible as distance divided by time. $\qquad$
- But if you get down to zero time, there is zero distance, and Zeno's objections $\qquad$ hold.


## Newton's clever way to calculate the impossible

- Newton found a way to manipulate an equation so that one side of it provided an answer while the other side seemed to defy common sense. $\qquad$
- For example, Galileo's law of falling bodies, expressed as an equation in Descartes' analytic geometry.


## Deriving a meaning for 0/0

- The equation for the position of a falling body near the surface of the Earth is:

$$
s=4.9 t^{2}
$$

Where

- $s$ is the total distance fallen,
- 4.9 is the distance the object falls in the $1^{\text {st }}$ second, expressed in meters,
- and $t$ is the time elapsed, in seconds.


## Calculation of the Limit of Average Velocity

- The average velocity of a falling object over any interval of time during its fall is $d / t$, that is, distance (during that interval), divided by the time elapsed.
- For example, by Galileo's Odd-number rule, if an object falls 4.8 meters in the $1^{\text {st }}$ second, in the $3^{\text {rd }}$ second it will fall $5 \times 4.8$ meters $=24$ meters.
- Its average velocity during the $3^{\text {rd }}$ second of its fall is 24 meters per second.


## But the object speeds up

- The smaller the time interval chosen, the closer will the average velocity be
$\qquad$ to the velocity at any moment during that interval.
- Suppose one could take an arbitrarily small interval of time.
- Call it $\Delta t$. Call the distance travelled during that small interval of time $\Delta s$.


## Approximating the

 instantaneous velocity- The average velocity of a moving object is distance divided by time.
- The average velocity during the arbitrarily small interval $\Delta t$ is therefore

$$
\Delta s / \Delta t
$$

- The smaller $\Delta t$ is, the closer will be $\Delta s / \Delta t$ to the "real" velocity at time $t$.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Working with the <br> Galileo/Descartes equation, 2

-6. $\Delta s=9.8 t \Delta t+4.9(\Delta t)^{2}$

- Now, divide line 6. by the time increment, $\Delta t$.
- 7. $\Delta s / \Delta t=\left[9.8 t \Delta t+4.9(\Delta t)^{2}\right] / \Delta t$
- Which simplifies to
- 8. $\Delta s / \Delta t=9.8 t+4.9 \Delta t$
- What happens to $\Delta s / \Delta t$ when $\Delta t($ and $\Delta s)$ go to zero?
- We don't know because 0/0 is not defined.


## Working with the

Galileo/Descartes equation, 4

## - Newton's solution:

- Forget about the left side of the equation:
$\qquad$
$\qquad$
$\qquad$
- 8. $\Delta s / \Delta t=9.8 t+4.9 \Delta t$
- Just look at what happens on the right $\qquad$ side.
- As $\Delta t$ becomes smaller and smaller, $\qquad$
- 9. $9.8 t+4.9 \Delta t$ becomes
$9.8 t+4.9(0)=9.8 t$


## Working with the

Galileo/Descartes equation, 5

- As the time increment $\Delta t$ gets closer and closer to zero,
- 10. $\Delta s / \Delta t$ gets closer to $9.8 t$.
- Since the left side of the equation must equal the right side and the left side is the velocity when $\Delta t$ goes to zero, then $9.8 t$ is the instantaneous velocity at time $t$.
- Example: After 3 full seconds of free fall, the object falling will have reached the speed of $9.8 \times 3=29.4$ meters per second.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

