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Large radar installations like this one are

used to track rockets and missiles.

Fr6r-JEfl 34.'!t A sinusoidal electromag-
netic wave.

It's true that Maxwell's equations are mathematically more complex than Newton'.
laws and that their solution, for many problems of practical interest, requires advancec

mathematics. Fortunately, we have the mathematical tools to get just far enough intc

Maxwell's equations to discover their most startling and revolutionary implication-th-
prediction of electromagnetic waves.

Electromesnetic Waves
It had been known since the early 19th century, from experiments on interference ar:
diffraction, that light is a wave. We studied the wave properties of light in Part V. b,-

at that time we were not able to determine just what is "waving."
Faraday speculated that light was somehow connected with electricity and ma-un;-

tism, but Maxwell, using his equations of the electromagnetic field, was the first :

understand that light is an oscillation of the electromagnetic field. Maxwell was a: .
to predict that

r Electromagnetic waves can exist at any frequency, not just at the frequencie.
visible light. This prediction was the harbinger of radio waves.

r A11 electromagnetic waves travel in a vacuum with the same speed, a speed that , .
now call the speed of light.

A general wave equation can be derived from Maxwell's equations, but the n:"'
essary mathematical techniques are beyond the level of this textbook. We'11 ado;: -

simpler approach in which we assume an electromagnetic wave of a certain form .: .

then show that it's consistent with Maxwell's equations. After all, the wave can't e:',.

unless it's consistent with Maxwell's equations.
To begin, we're going to assume that electric and magnetic fields can er,.

independently of charges and currents in a source-free region of space. Thi.
a very important assumption because it makes the statement that fields are re:
entities. They're not just cute pictures that tell us about charges and currents. - ,
real things that can exist all by themselves. Our assertion is that the fields can eri . .

a self-sustaining mode in which a changing magnetic field creates an electric f-. -

(Faraday's law) that in turn changes in just the right way to re-create the ong- ,

magnetic field (the Ampdre-Maxwell law).
The source-free Maxwell's equations, with no charges or currents, are

:0

:0

d@^

Any electromagnetic wave traveling in empty space must be consistent with i:.. .

equations.
Let's postulate that an electromagnetic plane wave traveling with speed r'-, :-

the characteristics shown in rt*r;ax:*.:*. It's a useful picture, and one that you'-- ,.,'

in any textbook, brrt a picture that can be very misieading if you don't think ab'r -
carefully. E and B are not spatial vectors. That is, they don't stretch spatiallr r:, :'
y- or z-direction for a cerlain distance. Instead, these vectors are showing the val;;,
the electric and magnetic fields along a single 1ine, the x-axis. An -d vector poi -..

in the y-direction says that at this position ort the x-axis, where the vector's tail r. -'r

electric field points in the y-direction and has a certain strength. Nothing is "reac:.. :
to a point in space above the x-axis. In fact, this picture contains no information .:, -

the fields anywhere other than right on the x-axis.
However, we are assumingthat thisisaplanewave,which,you'llrecallfromChapl:: -

is a wave for which the fields are the same everywhere in any yz-plane, perpendicu-,: r

the x-axis. Fr*tJH{ Ea"E*a shows a small section of the .p,-plane where, at this instant o, --- ,

dt
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E is pointing up and d is pointing toward you. The field strengths vary withr, the direction
of travel, but not with y. As the wave moves forward, the fields that are now in the -r, -plane
will soon arrive in the xr-plane, and those now in the:r2-plane will move to 13.

sl6uRE :4.20b shows a section of the yz-plane that slices the r-axis at x2. These fields
are moving out of the page, coming toward you. The fields are the same everywhere
in this plane, which is what we mean by a plane wave. If you watched a movie of the
event, you would see the E and B fields at each point in this plane oscillating in time,
but always synchronized with all the other points in the plane.

Gauss's Laws
Now that we understand the shape of the electromagnetic field, we can check its con-
sistency with Maxwell's equations. This field is a sinusoidal wave, so the components
of the fields are

E*: 0 E, : Eosin(2rr@lf - fl) E,: 0

B,: Bosh(2rr@lf -fl)
(34.23)

B,: o B,: o

where Es and -86 are the amplitudes of the oscillating electric and magnetic fields.
FTGURE i4.21 shows an imaginary box-a Gaussian surface-centered on the r-axis.

Both electric and magnetic field vectors exist at each point in space, but the figure
shows them separately for clarity. d oscillates along the y-axis, so all electric field
lines enter and leave the box through the top and bottom surfaces; no electric field
lines pass through the sides of the box.

FTGURE 34.41 A closed surface can be used to check Gauss's law for the electric and
magnetic fields.
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Because this is a plane wave, the magnitude of each elecffic field vector entering
the bottom of the box is exactly matched by the electric field vector leaving the top.
The electric flux through the top of the box is equal in magnitude but opposite in sign
to the flux through the bottom, and the flux through the sides is zero. Thts the net
electric flux is @" : 0. There is no charge inside the box because there are no sources
in this region of space, so we also have Qrn: 0. Hence the electric fietd of a plane
wave is consistent with the first of the source-free Maxwell's equations, Gauss's law.

The exact same argument applies to the magnetic field. The net magnetic flux is
@- : 0; thus the magnetic field is consistent with the second of Maxwell's equations.

Faraday's Law
Faraday's law is concerned with the changing magnetic flux through a closed curve.
We'll apply Faraday's law to a narrow rectangle in the xy-plane, shown in neurr s+.te,
with height h and width Ar. we'll assume Ar to be so small that E is essentially con-
stant over the width of the rectangle.
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rlcUftr 34.20 lnterpreting the electro-
magnetic wave of Figure 34.19.

(a) Wave traveling to the right

)
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(b) Wave coming toward you

FrGUir 14.2? Faraday's law can be
applied to a narrow rectangle in the
xy-plane.
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The magnetic field d points in the z-direction, perpendicular to the rectangle. The
magnetic flux through the rectangle is O.: BrAn"r*rr": BfA,x, hence the flux
changes at the rate

dQ^ d aB.
-- j: -(B_hL,x\::hl.xdt dt" at

The ordinary derivative dBzldt, which is the full rate of change of B from all possible

causes, becomes a partial derivative ABzlOt in this situation because the change in
magnetic flux is due entirely to the change of B with time and not at all to the spatial
variation of B.

According to our sign convention, we have to go around the rectangle in a ccw
direction to make the flux positive. Thus we must also use a ccw direction to evaluate
the line integral

$E.ot : I t.ot* I E.x* I E.R+ | t.oi (34,25)JJ)J)
right rop left bottom

The electric field E points in the y-direction, hence E. ai :0 at all points on the top
and bottom edges, and these two integrals are zero.

Along the left edge of the loop, at position ,, E has the same value at every pciint.
Figure 34.22 shows that the direction of E ls opposite to d3, thus E - ai : -E"(x)ds.
On the right edge of the 1oop, at position x * A,x, E is parallel rc d? and
E. ai : Er(x * L,x)ds. Thus the line integral of E - ai around the rectangle is

fu . * : -Er(x)h + Er(x + A^x)h : lEr(x+ Ax) - Er(x))h (34.26)
)

NorE > E (x) indicates that E, is a function of the position x. It is not E, multrplied
by x. .(

You learned in calculus that the derivative of the function flx) is

f(x + L^x) -./(x) I
Ar]

df
-: 

llm
dx Ax+o

(34.24)

(34.28)

We've assumed that Ax is very small. If we now let the width of the rectangle go to
zero, Lx + 0, Equation34.26 becomes

(34.27)

We've used a partial derivative because E, is a function of both position x and time r.

Now, using Equations 34.24 and34.27,we can write Faraday's law as

ft.rr:ffoo*: -oy: -*oo-
The area hL,x of the rectangle cancels, and we're left with

u', 
- - 

68..
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Equation 34.28, which compares the rate at which E, varies with position to the
rate at which B. varies with time, is a required condition that an electromagnetic wave
must satisfy to be consistent with Maxwell's equations. We can use Equations 34.23
for E, and B. to evaluate the partial derivatives:

oE, ZrrEn

E::."_',:"":: ^f : -rrf ,o"ot (zn1*t x - 11)



En: (Lf)86: v"*Bo (34.29)

where we used the fact that lf : v for any sinusoidal wave.
Equation 34.29,which came from applying Faraday's law, tells us that the field am-

plitudes ,86 and Bo of an electromagnetic wave are not arbitrary. Once the amplitude
Bs of the magnetic field wave is specified, the electric field amplitude Es must be
En : v,-B.1. Otherwise the fields won't satisfy Maxwell's equations.

The Amp&re-Maxwell l-aw
We have one equation to go, but this one will now be easier. The Ampdre-
Maxwell law is concerned with the changing electric flux through a closed curve.
F;cuftE :d.:r shows a very narrow rectangle of width Ax and length / in the xz-plane.
The electric field is perpendicular to this rectangle; hence the electric flux through it
is @. : EyA,""tunst": ErlL,x" This flux is changing at the rate

Thus the required condition of Equation 34.28 is

aE, 2nEn aB,

; 
: i'-'.o, (zrt*tt, - fi\) : -; : 2rfBocos(2rnx/r - ft\)

Canceling the many common factors, and multiplying by ,tr, we're left with

do- d aE

=: 
".-(E,lA,x): -2ttrdt dt dt

The line integral of E'ai around this closed rectangle is calculated just like the
line integral of i. ai in Figure 34.22. E is perpendicular to di on the narrow ends,
so E ' Ai : 0. The field at all points on the left edge, at position x, is F (r), and this
field is parallel to di to make d .di : B,(xtds. Similarly, E. ai : -8,(x-r A,x)d.s
at all points on the right edge, where E is opposite to d3.

Thus, if we let Ar --+ 0,

I
4E .al : B,(x)l - B,(x * Lx)l : -lB,(x + Ax) - B,(x)ltJ ,u- 

L '\" / - t\"/J' 
e43r)

- ------::ll.x

Equations 34.30 and 34.31 can now be used in the Ampbre-Maxwell law:

I - aB" da^ AE,,

?B'di - --1-\x : ,opoi: eeps;1Ax

The area of the rectangle cancels, and we're left with

08, 08,
^ : -eo&o ^dx dt

Equation 34.32 is a second required condition that the fields must satisfy. If we
again evaluate the pafiial derivatives, using Equations 34.23 for E, and 8., we find

'! : -rry rorr" (zrt*t x - yty)At.

* :'#,o,(z,r*rx - py)

With these, Equation 34.32becomes

AB- 2rB" AE.

; 
: '"fcos (2ot*/,\ - fr) : -.rl.oi : 2rret)p.af Enros(znutl. - nt)
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FrsLtaE 3e.23 The Ampdre-Maxwell law
can be applied to a narrow rectangle in
the "rz-plane.

lntegration direction

Wave direction

d1, + t")

(34.30)

(34.32)
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A final round of cancellations and another use of .tr/: v". leave us with

Eo: eopolf €opov"
(34.33)

The last of Maxwell's equations gives us another constraint between E, and Bo.

The Speed of Light
But how can Equation 34.29, which required E6 : v " B 6, and Equation 34.33 both be

true at the same time? The one and only way is if
1

.olroo 
: v"-

from which we find

t^
Y rop,

This is a remarkable conclusion. The constants e6 and ;.r,s are from electrostatics
and magnetostatics, where they determine the size of E and B due to point charges.

Coulomb's law and the Biot-Savart law, where es and ps first appeared, have nothing
to do with waves. Yet Maxwell's theory of electromagnetism ends up predicting
that electric and magnetic fields can form a self-sustaining electromagnetic wave f
that wave travels at the specific speed v" : llt/ffi. No other speed will satisfy
Maxwell's equations.

We've made no assumption about the frequency of the wave, so apparently all
electromagnetic waves, regardless of their frequency, travel (in vacuum) at the same

speed v"- : tlf ,otto. We call this speed c, the "speed of light," but it applies equally
well from low-frequency radio waves to ultrahigh-frequency x rays.

BoBo

An electromagnetic wave is propagating in the
positive.r-direction. At this instant of time, what is the direction of
E at the center of the rectangle?

a.

c.

e.

In the positive x-direction
In,the positive y-direction
In the positive z-direction

b. In the negative x-direction
d. In the negative y-direction
f. In the negative z-direction

S4.ffi Properties of Electromagnetic Waves
We've demonstrated that one very specific sinusoidal wave is consistent with
Maxwell's equations. It's possible to show that any electromagnetic wave, whether
it's sinusoidal or not, must satisfy four basic conditions:

1. The fields E and d are perpendicular to the direction ofpropagation i"-. Thus
an electromagnetic wave is a transverse wave.

2. E and d a." perpendicular to each other in a manner such that E x d is in the
direction of i"-.

3. The wave travels in vacuum at speed v" : ll\/ffi: c.

4. E : cB at any point on the wave.

In this section, we'11 look at some other properties of electromagnetic waves.



Energy and lntensity
Waves transfer energy. Ocean waves erode beaches, sound waves set your eardrums
vibrating, and light from the sun warms the earth. The energy flow of an electromag-
netic wave is described by the Poynting vector S, defined as

-1-+S=-EXB
lto

The Poynting vector, shown in rieuRr *a.ze, has two important properties:

1. The Poynting vector points in the direction in which an electromagnetic wave is
traveling. You can see this by looking back at Figure 34.19.

2. It is straightforward to show that the units of S are Wm2, or power (oules per
second) per unit area. Thus the magnitude S of the Poynting vector measures the
rate ofenergy transfer per unit area ofthe wave.

Because E and B of an electromagnetic wave are perpendicular to each other, and

E : cB, the magnitude of the Poynting vector is

s:E-!:!? :,,,r,
Po cQo

The Poynting vector is a function of time, oscillating from zero to S-,, : E]/cp,, and,

back to zero twice during each period of the wave's oscillation. That is, the energy
f'low in an electromagnetic wave is not smooth. It "pulses" as the electric and magnetic
l-relds oscillate in intensity. We're unaware of this pulsing because the electromagnetic
*,aves that we can sense-light waves-have such high frequencies.

Of more interest is the average energy transfer, averaged over one cycle of oscilla-
tion, which is the wave's intensity L In our earlier study of waves, we defined the in-
tensity of a wave to be 1 : P/A, where P is the power (energy transferred per second)
of a wave that impinges .on area A. Because f : Eo sin (2r @l f - ffi), and the average
over one period of sin2 (2r(x/i - fO) is j , the intensity of an electromagnetic wave is

34.6 .Properties of Electromagnetic Waves l02l

FrsuRr 34.i4 The Poynting vector.

(34.3s)

(34.36\

(34.31)
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Equation 34.36 relates the intensity of an electromagnetic wa\re, a quantity that is
easily measured, to the amplitude of the wave's electric field.

The intensity of a plane wave, with constant electric field amplitude Eo, would
not change with distance. But a plane wave is an idealization; there are no true plane
'*'aves in nature. You learned in Chapter 20 thal, to conserve energy, the intensity of a
'* ave far from its source decreases with the inverse square of the distance. If a source
'*ith power P,oo."" emits electromagnetic waves unformly in all directions, the electro-
rragnetic wave intensity at distance r from the source is

- P.nr.""
, - 4nr,

Equation 34.37 simply expresses the recognition that the energy of the wave is spread
over a sphere of surface area 4rrr2.

,' r::- , ...,I : . 
Fields Of a Cell phone

A digital cell phone broadcasts a 0.60 W signal at a frequency of 1.9 GHz. What are the
amplitudes of the electric and magnetic fields at a distance of 10 cm, about the distance
to the center of the user's brain?

Treat the cell phone as a point source of electromagnetic waves.

Continued

rutrlitfii
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The intensity of a 0.60 W point source at a distance of 10 cm is

- P.nur..
I 

---- 4rr'
0.60 w :4.78W1m2

4rr(0.10 m)2

We can find the electric field amplitude from the intensity:

-tr
V ..0 V t3.00 x 108 n sX8.85 x l0-r2 C2lN m2)

: 60 V/m

The amplitudes of the electric and magnetic fields are related by the speed of light. This
allows us to compute

2.Ox 10-1 T

The electric field amplitude is modest; the magnetic field amplitude is very
small. This implies that the interaction of electromagnetic waves with matter is mostly
due to the electric field.

-*t**,**r;..-4; 
"r..*o-ugn.,i. 

*ru. is traveling in ttre

positive y-direction. The electric field at one instant of time is shown
at one position. The magnetic field at this position points

En
86:::

c

a.

c.

e.

In the positive r-direction.
In the positive y-direction.
Toward the origin.

b. In the negative x-direction.
d. In the negative y-direction.
f. Away from the origin.

Artist's conception of a future spacecraft
powered by radiation pressure from the
SUN.

Radiation Fressure
Electromagnetic waves transfer not only energy but also momentum. An objecr
gains momentum when it absorbs electromagnetic waves, much as aball at rest gains
momentum when struck by a ball in motion.

Suppose we shine a beam of light on an object that completely absorbs the light en-
ergy. If the object absorbs energy during a time interval Ar, its momentum changes br

Lp: energy absorbed

This is a consequence of Maxwell's theory, which we'll state without proof.
The momentum change implies that the light is exefiing a force on the object.

Newton's second law, in terms of momentum, is F : A,pl L,t. The radiation force due
to the beam of light is

- _ Lp _ (energy absorbed)/Ar p
- . 

:;

where P is the power (oules per second) of the light.
It's more interesting to consider the force exerted on an object per unit area, which

is called the radiation pressure p,uo. The radiation pressure on an object that absorbs
all the light is

F PIA
Prurl: 

^AC

where 1 is the intensity of the light wave. The subscript on prad is important in this
context to distinguish the radiation pressure from the momentum p.

I
L

(34.38)


