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Large radar installations like this one are
used to track rockets and missiles.

FIGURE 34.19 A sinusoidal electromag-
netic wave.

It’s true that Maxwell’s equations are mathematically more complex than Newton's
laws and that their solution, for many problems of practical interest, requires advanced
mathematics. Fortunately, we have the mathematical tools to get just far enough intc
Maxwell’s equations to discover their most startling and revolutionary implication—the
prediction of electromagnetic waves.

Electromagnetic Waves

It had been known since the early 19th century, from experiments on interference anc
diffraction, that light is a wave. We studied the wave properties of light in Part V, bu:
at that time we were not able to determine just what is “waving.”

Faraday speculated that light was somehow connected with electricity and magne-
tism, but Maxwell, using his equations of the electromagnetic field, was the first
understand that light is an oscillation of the electromagnetic field. Maxwell was ablz
to predict that ’

B Electromagnetic waves can exist at any frequency, not just at the frequencies o
visible light. This prediction was the harbinger of radio waves. :

B All electromagnetic waves travel in a vacuum with the same speed, a speed that w=
now call the speed of light.

A general wave equation can be derived from Maxwell’s equations, but the n=c-
essary mathematical techniques are beyond the level of this textbook. We’ll adops =
simpler approach in which we assume an electromagnetic wave of a certain form zn:
then show that it’s consistent with Maxwell’s equations. After all, the wave can’t ex:
unless it’s consistent with Maxwell’s equations.

To begin, we’re going to assume that electric and magnetic fields can ex::
independently of charges and currents in a source-free region of space. This
a very important assumption because it makes the statement that fields are rea
entities. They’re not just cute pictures that tell us about charges and currents. =
real things that can exist all by themselves. Our assertion is that the fields can exis:
a self-sustaining mode in which a changing magnetic field creates an electric fizic
(Faraday’s law) that in turn changes in just the right way to re-create the origim:
magnetic field (the Ampére-Maxwell law).

The source-free Maxwell’s equations, with no charges or currents, are

= — = sy dq)m
E-dA=0 Bedd =—2
d (34.22
= - = e dq)e
B-dA =0 B'dS:EO/.L()I

Any electromagnetic wave traveling in empty space must be consistent with thzse
equations.
Let’s postulate that an electromagnetic plane wave traveling with speed v =

in any textgook, bllt a picture that can be very misleading if you don’t think abour
carefully. £ and B are not spatial vectors. That is, they don’t stretch spatially in =
y- or z-direction for a certain distance. Instead, these vectors are showing the values
the electric and magnetic fields along a single line, the x-axis. An E vector pointmE
in the y-direction says that at this position on the x-axis, where the vector’s tail is. =
electric field points in the y-direction and has a certain strength. Nothing is “reachim:
to a point in space above the x-axis. In fact, this picture contains no information zu
the fields anywhere other than right on the x-axis.

However, we are assuming that this is a plane wave, which, you’ll recall from Chapter -
is a wave for which the fields are the same everywhere in any yz-plane, perpendiculzr
the x-axis. FIGURE 34.20a shows a small section of the xy-plane where, at this instant of =
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FIGURE 34.20 Interpreting the electro-

E is pointing up and B is pointin toward you. The field strengths vary with x, the direction
. 8up P = . - " magnetic wave of Figure 34.19.

of travel, but not with y. As the wave moves forward, the fields that are now in the x,-plane
will soon arrive in the x,-plane, and those now in the x,-plane will move to x;. (a) Wave traveling to the right
FIGURE 34.20b shows a section of the yz-plane that slices the x-axis at x,. These fields

are moving out of the page, coming toward you. The fields are the same everywhere . 4F P
in this plane, which is what we mean by a plane wave. If you watched a movie of the +€ T Al
event, you would see the E and B fields at each point in this plane oscillating in time, o OF i "
but always synchronized with all the other points in the plane. A s
: .
Gauss’s Laws —O—O—O—x
1 2 3
Now that we understand the shape of the electromagnetic field, we can check its con- A
sistency with Maxwell’s equations. This field is a sinusoidal wave, so the components A T\
of the fields are ‘. =—Boutof page
A
A
E,=0 E,=Eysin(2n(x/A—f9)) E,=0 B\ B

(34.23) \
B,=0 B,=0 B, = Bysin(2m(x/A — ft))

where Ej and By are the amplitudes of the oscillating electric and magnetic fields.

FIGURE 34.21 shows an imaginary box—a Gaussian surface—centered on the x-axis.
Both electric and magnetic field vectors exist at each point in space, but the figure
shows them separately for clarity. E oscillates along the y-axis, so all electric field
lines enter and leave the box through the top and bottom surfaces; no electric field
lines pass through the sides of the box.

FIGURE 34.21 A closed surface can be used to check Gauss's law for the electric and
magnetic fields.
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Because this is a plane wave, the magnitude of each electric field vector entering
the bottom of the box is exactly matched by the electric field vector leaving the top.
The electric flux through the top of the box is equal in magnitude but opposite in sign
to the‘ flux tl.lrough the bottorp, and the ﬂyx 'through the sides is zero. Thus the net FIGURE 34.22 Faraday’s law can be
electric flux is @, = 0. There is no charge inside the box because there are no sources applied to a narrow rectangle in the
in this region of space, so we also have Q;, = 0. Hence the electric field of a plane xy-plane.
wave is consistent with the first of the source-free Maxwell’s equations, Gauss’s law.

The exact same argument applies to the magnetic field. The net magnetic flux is 7 /Rectangle
®,, = 0; thus the magnetic field is consistent with the second of Maxwell’s equations.

Faraday’s Law

Faraday’s law is concerned with the changing magnetic flux through a closed curve. 2
We’ll apply Faraday’s law to a narrow rectangle in the xy-plane, shown in FiGURE 34.22,

with height 4 and width Ax. We’ll assume Ax to be so small that B is essentially con-
stant over the width of the rectangle.

Wave direction

Integration direction
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The magnetic field B points in the z-direction, perpendicular to the rectangle. The
magnetic flux through the rectangle is @, = B, A cuange = B.2Ax, hence the flux
changes at the rate

dd, d d

B
—8 = —(BhAx) = —2 4.24
o = g B0 = —hAx (34.24)

The ordinary derivative dB,/dt, which is the full rate of change of B from all possible
causes, becomes a partial derivative dB,/d¢ in this situation because the change in
magnetic flux is due entirely to the change of B with time and not at all to the spatial
variation of B.

According to our sign convention, we have to go around the rectangle in a ccw
direction to make the flux positive. Thus we must also use a ccw direction to evaluate
the line integral

ffé’-dzz J E-ds + fﬁ-dﬂ JE-dEJr f E-ds = (34.25)
" right top left bottom
The electric field E points in the y-direction, hence E-ds =0atall points on the top
and bottom edges, and these two integrals are zero.

Along the left edge of the loop, at position x, E has the same value at every point.
Figure 34.22 shows that the direction of E is opposite to ds, thus E + d5 = —E,(x) ds.
On the right edge of the loop, at position x+ Ax, E is parallel to ds and
E-ds = E(x + Ax)ds. Thus the line integral of E-ds around the rectangle is

ng’ +d5 = —E,0h + Ey(x + Aoh = [E(x+ Ax) — E()h  (34.26)

NOTE » E(x) indicates that E, is a function of the position x. It is not E, multiplied
by x. <

You learned in calculus that the derivative of the function f{x) is

df {f(x +Ax) —f(x)]

-~ =i
1m Ax

dx Ax—0
We’ve assumed that Ax is very small. If we now let the width of the rectangle go to
zero, Ax — 0, Equation 34.26 becomes

L S
%E-ds = —hAx (34.27)
dax

We’ve used a partial derivative because E| is a function of both position x and time .
Now, using Equations 34.24 and 34.27, we can write Faraday’s law as

04 OEy do 0B,
%E-ds= “hAx = ——2 = ——ZpAx
dx dt at
The area hAx of the rectangle cancels, and we’re left with
JE, 0B,
= e (34.28)
dx at

Equation 34.28, which compares the rate at which E, varies with position to the
rate at which B, varies with time, is a required condition that an electromagnetic wave
must satisfy to be consistent with Maxwell’s equations. We can use Equations 34.23
for E, and B, to evaluate the partial derivatives:

o0E, 27E,

= A cos(27r(x/)\—ﬁ))

= —2mfBycos (2m(x/A — f1))

dx
0B,
at

| il



Thus the required condition of Equation 34.28 is

JE, 277
ax

BZ
= 2mfBycos (2 (x/A — fi))

©cos (27 (/A — fi)) = e

Canceling the many common factors, and multiplying by A, we’re left with
EO = ()Lf)BO = VemBO (3429)

where we used the fact that Af = v for any sinusoidal wave.

Equation 34.29, which came from applying Faraday’s law, tells us that the field am-
plitudes E, and B, of an electromagnetic wave are not arbitrary. Once the amplitude
B, of the magnetic field wave is specified, the electric field amplitude E, must be
Ey = v, Bo. Otherwise the fields won’t satisfy Maxwell’s equations.

The Ampére-Maxwell Law

We have one equation to go, but this one will now be easier. The Ampere-
Maxwell law is concerned with the changing electric flux through a closed curve.
FIGURE 34.23 shows a very narrow rectangle of width Ax and length [ in the xz-plane.
The electric field is perpendicular to this rectangle; hence the electric flux through it
is @, = E A cciangle = E,Ax. This flux is changing at the rate

dq)e—iEzA)—e—%ZA 34.30
dt_dt(yx_at = Sl

The line 1ntegral of B+ds around th1s closed rectangle is calculated just like the
line 1ntegral of E-d5 in Figure 34.22. Bis perpendicular to 5 on the > DAITow ends,
so B+ds = 0. The field at all pomts on the left edge, at p0s1t10n x, 18 B (x), and this
field is parallel to ds to make B-ds = B(x)ds. Similarly, B-ds = —B.(x+ Ax)ds
at all points on the right edge, where Bis opposite to ds.

Thus, if we let Ax — 0,

jlgﬁ +d3 = B,(x)| — B(x + Ax)l = —[B,(x + Ax) — B(0)]l
4B (34.31)

0x

Equations 34.30 and 34.31 can now be used in the Ampere-Maxwell law:

o L ) do, oE,
B-ds = e ol EOMO?IAX
The area of the rectangle cancels, and we’re left with
i e 34,32
ax = TE€pMo 3t (34.32)

Equation 34.32 is a second required condition that the fields must satisfy. If we
again evaluate the partial derivatives, using Equations 34.23 for E, and B,, we find

OE,
? = _27TfE0 COS (27T(X//\ _ft))
GBZ 27TBO
i cos (27T(x/)\ —ﬁ))

X

With these, Equation 34.32 becomes

9B, 27B

; JE,
cos (2m(IA — fH)) = —eop— o = 2meopafEgcos (2m(x/A — fo))

ox A
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FIGURE 34.23 The Ampere-Maxwell law
can be applied to a narrow rectangle in

the xz-plane.
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A final round of cancellations and another use of Af = v,,, leave us with
Ey= = (34.33)
a GOMO)\f EOMOVem

The last of Maxwell’s equations gives us another constraint between E; and B,,.

The Speed of Light

But how can Equation 34.29, which required E, = v, B,, and Equation 34.33 both be
true at the same time? The one and only way is if

1

€oMoVem

= Vem
from which we find

V. — ‘1, — 300X 1Pms=¢ (34.34)

This is a remarkable conclusion. The constants ¢ and Mo are from electrostatlc\
and magnetostatics, where they determine the size of E and B due to point charges.
Coulomb’s law and the Biot-Savart law, where €, and u, first appeared, have nothing
to do with waves. Yet Maxwell’s theory of electromagnetism ends up predicting
that electric and magnetic fields can form a self-sustaining electromagnetic wave if
that wave travels at the specific speed v, = 1/ Ve, No other speed will satisfy
Maxwell’s equations.

We’ve made no assumption about the frequency of the wave, so apparently all
electromagnetic waves, regardless of their frequency, travel (in vacuum) at the same
speed v, = 1/Veguo. We call this speed c, the “speed of light,” but it applies equally
well from low-frequency radio waves to ultrahigh-frequency x rays.

An electromagnetic wave is propagating in the y

positive x-direction. At this instant of time, what is the direction of
£
E at the center of the rectangle?
= B(x + Ax)
o i ; o B(x)
a. In the positive x-direction b. In the negative x-direction . x
¢. In the positive y-direction d. In the negative y-direction =
o . B . 5 s Z v
e. In the positive z-direction f. In the negative z-direction
A

Properties of Electromagnetic Waves

We’ve demonstrated that one very specific sinusoidal wave is consistent with
Maxwell’s equations. It’s possible to show that any electromagnetic wave, whether
it’s sinusoidal or not, must satisfy four basic conditions:

1. The fields E and B are perpendicular to the direction of propagation V,,,. Thus
an electromagnetic wave is a transverse wave.

2. E and B are perpendicular to each other in a manner such that E X B is in the
direction of V.,

3. The wave travels in vacuum at speed v, = 1/Veguy = ¢

4. E = ¢B at any point on the wave.

In this section, we’ll look at some other properties of electromagnetic waves.




o
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Energy and Intensity

Waves transfer energy. Ocean waves erode beaches, sound waves set your eardrums

vibrating, and light from the sun warms the earth. The energy flow of an electromag-
. . 2 .

netic wave is described by the Poynting vector §, defined as

182

] (34.35)
Mo

S

The Poynting vector, shown in FiGURE 34.24, has two important properties:

1. The Poynting vector points in the direction in which an electromagnetic wave is
traveling. You can see this by looking back at Figure 34.19.

2. It is straightforward to show that the units of S are W/m?, or power (joules per
second) per unit area. Thus the magnitude S of the Poynting vector measures the
rate of energy transfer per unit area of the wave.

Because E and B of an electromagnetic wave are perpendicular to each other, and
E = ¢B, the magnitude of the Poynting vector is

BB B
Mo CHo

S = Cepl

The Poynting vector is a function of time, oscillating from zero to S,,, = E;/cu, and
back to zero twice during each period of the wave’s oscillation. That is, the energy
flow in an electromagnetic wave is not smooth. It “pulses” as the electric and magnetic
fields oscillate in intensity. We’re unaware of this pulsing because the electromagnetic
waves that we can sense—light waves—have such high frequencies.

Of more interest is the average energy transfer, averaged over one cycle of oscilla-
tion, which is the wave’s intensity 1. In our earlier study of waves, we defined the in-
tensity of a wave to be / = P/A, where P is the power (energy transferred per second)
of a wave that impinges on area A. Because E = E;sin (27T(x//\ = ﬁ)), and the average
over one period of sin’ (27T(X/)\ o ft)) is %, the intensity of an electromagnetic wave is

Equation 34.36 relates the intensity of an electromagnetic wave, a quantity that is
easily measured, to the amplitude of the wave’s electric field.

The intensity of a plane wave, with constant electric field amplitude E;, would
not change with distance. But a plane wave is an idealization; there are no true plane
waves in nature. You learned in Chapter 20 that, to conserve energy, the intensity of a
wave far from its source decreases with the inverse square of the distance. If a source
with power P, emits electromagnetic waves uniformly in all directions, the electro-
magnetic wave intensity at distance r from the source is

Psource
1 T (34.37)
Equation 34.37 simply expresses the recognition that the energy of the wave is spread
over a sphere of surface area 477,

Fields of a cell phone

A digital cell phone broadcasts a 0.60 W signal at a frequency of 1.9 GHz. What are the
amplitudes of the electric and magnetic fields at a distance of 10 cm, about the distance
to the center of the user’s brain?

Treat the cell phone as a point source of electromagnetic waves.

Continued

FIGURE 34.24 The Poynting vector.

Wave direction
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positive y-direction. The electric field at one instant of time is shown
at one position. The magnetic field at this position points

The intensity of a 0.60 W point source at a distance of 10 cm is

Psource - 0.60 W
4 44(0.10 m)?

= = 4.78 W/m?

We can find the electric field amplitude from the intensity:

GROT \/ 2(4.78 W/m?)
- cey (3.00 X 108 m/s)(8.85 X 1072 C¥Nm?)

=60 V/m

The amplitudes of the electric and magnetic fields are related by the speed of light. This
allows us to compute

By=—=20X10""T
¢
The electric field amplitude is modest; the magnetic field amplitude is very
small. This implies that the interaction of electromagnetic waves with matter is mostly
due to the electric field.

An electromagnetic wave is traveling in the

a. In the positive x-direction. b. In the negative x-direction.
c. In the positive y-direction. d. In the negative y-direction.
e. Toward the origin. f. Away from the origin.

Artist’s conception of a future spacecraft
powered by radiation pressure from the
sun.

Radiation Pressure

Electromagnetic waves transfer not only energy but also momentum. An object
gains momentum when it absorbs electromagnetic waves, much as a ball at rest gains
momentum when struck by a ball in motion.

Suppose we shine a beam of light on an object that completely absorbs the light en-
ergy. If the object absorbs energy during a time interval Az, its momentum changes by

energy absorbed
Ap=——""—"—
c
This is a consequence of Maxwell’s theory, which we’ll state without proof.

The momentum change implies that the light is exerting a force on the object.
Newton’s second law, in terms of momentum, is F = Ap/At. The radiation force due
to the beam of light is

e Ap _ (energy absorbed)/Ar P
Ar ¢ L

where P is the power (joules per second) of the light.

It’s more interesting to consider the force exerted on an object per unit area, which

is called the radiation pressure p, ;. The radiation pressure on an object that absorbs
all the light is

B Py i

Praga = T =

1 p = (34.38)

where [ is the intensity of the light wave. The subscript on p,,4 is important in this
context to distinguish the radiation pressure from the momentum p.




