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M odels of neural networks are 
receiving widespread atten- 
tion as potential new 

architectures for computing systems. The 
models we consider here consist of highly 
interconnected networks of simple com- 
puting elements. A computation is per- 
formed collectively by the whole network 
with the activity distributed over all the 
computing elements. This collective oper- 
ation results in a high degree of parallel 
computation and gives the network the 
potential to solve complex problems 
quickly. Neural network models have 
demonstrated functions such as associa- 
tive memory, adaptive learning from 
examples, and combinatorial optimi- 
zation. 

To date, the research concerning neural 
network models has focused mainly on 
theoretical studies and computer simula- 
tions. However, the real promise for appli- 
cations of the models lies in specialized 
hardware, in particular specialized micro- 
electronic circuits. Simulations of large 
networks on serial computers are painfully 
slow, and only with customized hardware 
can we hope to realize neural network 
models with speeds fast enough for appli- 
cations. 

Digital accelerators to simulate neural 
networks are now commercially available, 
but they are still orders of magnitude 
slower than what we can achieve by 
directly fabricating a network with hard- 

To obtain the full 
benefit of neural 

network algorithms, 
we need special- 

purpose hardware. An 
experimental CMOS 

VLSI circuit was 
tested as an 

associative memory 
and as a pattern 

classifier. 

ware. Several researchers have built 
models with discrete electronic compo- 
nents. These implementations help us 
study properties such as the dynamics of 
these circuits, but they are too bulky for 
real applications. 

The most promising approach for 
implementing electronic neural nets is to 
fabricate special-purpose very-large-scale- 
integration chips. With today’s integration 

density, a large number of simple proces- 
sors can be packed on a single chip 
together with the necessary interconnec- 
tions to make a collective computing net- 
work. Several groups have initiated 
experiments with VLSI implementations 
and demonstrated a few functioning 
 circuit^.'^^ 

Attempts are under way to build neural 
network models with  optic^.^ The high 
interconnectivity of the networks makes 
optics attractive because interconnections 
can be made optically in three dimensions. 
The circuit on a microchip is bound to the 
two dimensions of the chip’s surface. 
However, optical computing technology is 
still in its infancy and realizations suitable 
for applications probably lie further in the 
future. 

We describe a complementary metal 
oxide semiconductor (CMOS) very large 
scale integrated (VLSI) circuit implement- 
ing a connectionist neural network model 
that consists of an array of 54 simple 
processors fully interconnected with a 
programmable connection matrix. This 
experimental design tests the behavior of 
a large network of processors integrated 
on a chip. We can operate the circuit in 
several different configurations by pro- 
gramming the interconnections between 
the processors. We made tests with the cir- 
cuit working as an associative memory and 
as a pattern classifier. The results were so 
encouraging that we interfaced the chip to 
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Figure 1. An electronic “neuron.” 
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Figure 2. Schematic of the implemented circuit. At each crosspoint of an input and 
an output line, a resistive connection can be set. All the connections are program- 
mable. The configuration of resistors shown here is just one example. Two 
inverters are connected in series and work as one amplifier unit. To have the 
inverted and the noninverted output going into the connection matrix makes it easy 
to control excitatory and inhibitory connections. 

a minicomputer and now use it as a 
coprocessor in pattern recognition experi- 
ments. This mode of operation allows us 
to test the chip’s behavior in a real appli- 
cation and study how pattern recognition 
algorithms can be mapped into such a 
network. 

Connectionist model 
Biological neural networks inspired the 

models we are implementing in electronics, 
but we are not attempting to imitate real 
neurons. Clearly, the models used grossly 
simplify the biological networks. But even 
these relatively simple networks have com- 
plex dynamics and show interesting collec- 
tive computing properties. It is this 
collective computation that we try to 
exploit by building such networks. 

The type of circuit described here is 
often referred to as a connectionist model. 
In a connectionist model, an individual 
“neuron” does very little computation, 
typically just a thresholding of its input sig- 
nal. The kind of computation performed 
by the whole network depends on the inter- 
connections among the neurons. Figure 1 
shows a possible electronic circuit for such 
a simple neuron. An amplifier models the 
cell body, wires replace the input structure 
(dendrite) and the output structure (axon), 
and resistors model the synaptic connec- 
tions between neurons. The amplifier’s 
output voltage replaces the firing rate of 
a real neuron. 

Each of the resistors connects the input 
line of the amplifier to the output line of 
another amplifier. Therefore, the state of 
an amplifier is determined by the states of 
all the other amplifiers. When the ampli- 
fier measures the current flowing into the 
input line, we can express this as 

‘Out, =f (zzf) 
1 

=f(z(vouff- VinJ)TJ) ( l )  
f 

where Vin, Vout are the input and output 
voltages of an amplifier; Z, is the current 
flowing through one resistor; T,, is the 
conductance of the resistor connecting 
amplifier i with amplifierj; andf() is the 
transfer function of the amplifier. 

Equation 1 shows how the states of the 
amplifiers, represented by Vout,, deter- 
mine how much current flows into the 
input line and therefore determine the state 
of this amplifier. The output voltage of the 
amplifier is then given by its transfer 
characteristics. Its output connects to the 
input of many other amplifiers and 
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influences their states. A network of highly 
interconnected amplifiers forms in this 
way. It is very difficult to describe the 
dynamics of such a system for an arbitrary 
distribution of the resistive connections, 
but many special cases can be controlled 
well and exploited for collective computa- 
tion. Such networks have been demon- 
strated as functional associative memory 
and as ~ p t i m i z e r s . ~ . ~  

The implemented circuit well suits work 
as an associative memory or as a pattern 
classifier. To have the network perform 
these functions does not require precise 
control of the gain of the amplifiers or the 
ability to fine tune the resistive connec- 
tions. This makes it possible to design 
interconnections and amplifiers using only 
a small area, so many of these components 
can be integrated on a single chip. 

The function described by Equation 1 
could be implemented in digital hardware. 
But this would require a complex 
multiplier-adder circuit at the input of each 
neuron, resulting in a large circuit even for 
a modest number of neurons. The imple- 
mentation described here uses a mixture of 
analog and digital CMOS VLSI tech- 
nology. 

Using analog computation, we can 
achieve a multiplication with a single resis- 
tor, and the summing of currents is accom- 
plished “for free” on the input wire of the 
amplifier. However, designing large inte- 
grated analog circuits is a difficult task. 
There is a strong tendency in signal 
processing today to avoid analog compu- 
tation and do everything digitally. Yet the 
high interconnectivity and relatively low 
precision needed for the signals in a neu- 
ral net are well tailored for an analog 
approach, and the gain in computing 
power of the network should outweigh the 
extra design effort. 

The circuit 
Figure 2 shows a schematic of the imple- 

mented circuit. It consists of an array of 54 
amplifiers with their inputs and outputs 
interconnected through a matrix of resis- 
tive coupling elements. All of the coupling 
elements are programmable-a resistive 
connection can be turned on or off. 

Figure 3 shows a photomicrograph of 
the circuit. Fabricated in CMOS technol- 
ogy with 2.5-micrometer design rules, it 
contains roughly 75,000 transistors in an 
area measuring 6.7 x 6.7 millimeters. By 
far the largest active area of the chip, 
almost 90 percent, is used for the program- 
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Figure 3. Photomicrograph of the chip. The modules are: 1 = amplifiers, control 
logic, bit decoder, input bus, and output bus; 2 = decoder to address rows in the 
interconnection matrix; 3 = interconnection matrix. 

”-$ 
Figure 4. One of the coupling elements connecting the output of an amplifier to the 
input of another amplifier. SI and S4 are closed when the output of the amplifier 
controlling them is high (noninverted output high). If a “1” is stored in RAM 1, S2 
is closed and the connection is excitatory. If a “1” is stored in RAM 2, SJ is closed 
and the connection is inhibitory. If both RAM cells store a “0,” no current flows 
through this interconnection regardless of the state of the controlling amplifier. 

mable coupling network. the capacitance of the output line. For 
In this design the circuit shown in Fig- each connection between two amplifiers, 

ure 4 replaces the resistors of Figure 2. The two memory cells control switches S, and 
output lines of the amplifiers do not feed S3. The content of these memory cells 
current into the input lines; instead they determines the type of connection. One of 
control the switches SI and Sd. This three connections can be selected: an 
method reduces the amplifier load to just excitatory (Sz enabled), an inhibitory (S3 
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Figure 5. Programming of the interconnections for the pattern classifier circuit. 
The ‘‘ + ” and the “ - ” mark excitatory and inhibitory connections, respectively. 
Below the schematic the stored vectors are shown. 

enabled), or an open (both disabled) state. 
The network contains a total of 2916 such 
coupling elements. Notice that when an 
amplifier output is low, the connection 
turns off completely and no current flows 
in either direction. 

The voltage of an input line of an ampli- 
fier is determined by the sum of the cur- 
rents flowing into the node. This voltage 
adjusts to a value where the total current 
is zero. Since the input impedance of the 
amplifiers is very high, this leads to 

where Z, is the current flowing through a 
resistor of the coupling element controlled 
by amplifier i ;  AV, is the voltage differ- 
ence across a resistor, ( V i n j -  V o o ,  
Vin, - Vss); and R,  is the resistor, (R + , 
R - ) .  

Thus, the voltage Vin, is an analog 
measure of the sum of the contributions of 
all the amplifiers connected to input line 
j. The amplifiers used have a high gain and 
work essentially as threshold elements, 
with the switching threshold about half- 
way between the ground and the supply 
voltage. Analog computation is used only 
within the connection matrix; input and 
output data and all the control signals are 
digital. 

Data input and output are transferred 
through a register where one memory cell 

is connected to each amplifier. The input 
data are first loaded into this register. 
From there they can be loaded into the 
memory cells of the connection matrix, or 
used to initialize the circuit. Initialization 
of the circuit is done by charging the net- 
work with the voltage levels correspond- 
ing to the components of the input vector. 
The amplifiers are turned off during this 
initialization cycle. For the computation, 
the amplifiers are turned on and the net- 
work evolves to a stable state without any 
external control or synchronization 
between the amplifiers. After the circuit 
has reached a stable state, the output volt- 
age of each amplifier is stored in the reg- 
ister, which can then be read out. 

Programming the chip 
The circuit’s architecture facilitates 

mapping several different configurations 
into the network simply by programming 
the connections between the amplifiers. 
Figure 5 shows the arrangement of the 
interconnections for a configuration used 
to do pattern classification. The amplifiers 
are divided into two groups: the label units 
and thevector units. A number of vectors 
are stored in the circuit, each one along the 
input line of one label unit. The compo- 
nents of the stored vectors can have the 
values + 1, - 1, or 0. An excitatory con- 

nection is set for a + 1 and an inhibitory 
connection for a - 1. 

The input vector is presented on the 
inputs of the vector units. Its components 
can have the values + 1 or 0. Wherever a 
+ 1 in the input vector is set, current can 
be injected or drawn from the input line of 
a label unit depending on the type of the 
connection. As described by Equation 2, 
the condition for a stable state is that the 
total current flowing into an input line 
equals 0. If the input voltage is above the 
threshold of the amplifier, this label unit 
turns on; otherwise, it remains off. 
Whether a label turns on or not is 
described by Equation 3: 

(3) 

where vi denotes components of the input 
vector, ( + 1,O); pi denotes components of 
the stored vectors, ( -  1, 0, + 1); and Riis 
the resistance of the connections, ( R - ,  
R + ) .  

The input vector is compared in paral- 
lel with all the stored vectors and an inner 
product between the input vector and the 
stored vectors is evaluated. All the stored 
vectors closely resembling the input vector 
turn on their label units.* A + 1 in the 
input vector at the position of a + 1 in the 
stored vector gives a positive contribution 
to the sum, while a - 1 in the stored vec- 
tor in this position gives a negative contri- 
bution. R +  is about six times larger than 
R -  , Therefore, a mismatch (a + 1 in the 
input in the position of - 1 in the stored 
vector) counts six times as much as a 
match. This ratio of R ,  to R -  has no 
great significance; it simply reflects the 
ratio of the resistance of the p-channel and 
the n-channel transistors of the CMOS cir- 
cuit. For the applications described later, 
it is convenient to have the inhibition 
stronger than the excitation, but we could 
obtain the same effect by using multiple 
connections. 

By using a few amplifiers as bias units, 
we can shift the threshold of a label unit. 
We can program the connections between 
the bias units and the label units to  set 
different thresholds for each stored vector. 
The right-hand side of Equation 3 is then 
replaced by the bias value. 

T h e  classification properties of this circuit cor- 
respond to those of a single-layer perceptron; it can 
discriminate between linearly separable patterns. Since 
we are dealing with binary vectors, the configuration 
space consists of the corners of an n-dimensional 
hypercube. Decision regions of any shape can be built 
in this space as the sum of linearly separable regions. 
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The number of stored vectors and their 
lengths are limited by the number of 
amplifiers in the circuit. Each component 
of the input vector uses one amplifier, and 
each label unit needs one. Therefore, the 
number of bits in a vector plus the number 
of stored vectors must be smaller than 54. 
Usually, a few amplifiers are used for 
biases, reducing this number to approxi- 
mately 50. 

This arrangement uses only the connec- 
tions between the outputs of the vector 
units and the inputs of the label units, 
while the largest part of all the connections 
in the matrix remains idle. We can achieve 
a more efficient use of the circuit by using 
the register cells as the vector units. The 
arrangement described uses these cells only 
as intermediate storage for the input vec- 
tor, but they can also charge the matrix to 
its initial condition. All the amplifiers then 
work as label units. Up to 54 vectors, each 
54 bits long, can be stored in the network 
and are compared in parallel to the input 
vector. To read out the result, the register 
cells must switch quickly from writing the 
input vector to reading the result without 
feeding the result back into the connection 
matrix. This requires a precisely timed 
pulse controlling the length of time the 
amplifiers are turned on. This mode of 
operation is used for feature extraction 
from images (see the section “Examples of 
applications”). 

Adding inhibitory connections between 
the label units and connecting the outputs 
of the label units to the inputs of the vec- 
tor units can yield an associative memory. 
This arrangement is shown schematically 
in Figure 6. In this circuit, vectors with 
components + 1 and 0 are stored. In addi- 
tion to the connections along the input 
lines of the label units described above, 
there are inhibitory connections between 
all the label units. Each label unit inhibits 
all the other label units, but not itself. For 
the connections between the label outputs 
and the vector inputs, the same vector is 
placed along the output line of a label unit 
stored along its input line. For a + 1 in the 
vector, an excitatory connection is set, and 
for a 0, an inhibitory connection is set. 

The circuit is initialized with all input 
lines of the label units discharged to 
ground. The input vector is given on the 
input lines of the vector units. Wherever 
a + 1 in the input vector and in a stored 
vector occupy the same position, current 
is injected into the input line of a label unit. 
The speed at which an input line of a label 
unit changes state depends on the inner 

INPUTS 

+1 0 +1 +1 LABEL UNITS 
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Figure 6. The interconnections set for an associative memory circuit. 

product of the input vector and a stored 
vector, That is, 

where Kn is the voltage of the input line; 
C i s  the capacitance of the input node of 
a label; R ,  is the resistance of the excita- 
tory connection; U, denotes the compo- 
nents of the input vector, (0, + 1); and p, 
denotes the components of the stored vec- 
tor, (0, + 1). 

The stored vector that has the largest 
inner product with the input vector will 
turn on its label unit first. As one label unit 
turns on, it inhibits all the other label units. 
If this inhibition is strong enough, no other 
label unit will turn on. 

As mentioned above, an inhibition is six 
times stronger than an excitation. This 
limits the allowed mutual overlap (number 
of common 1’s) of two stored vectors to 
five bits; biases are used to circumvent this 
limitation. The label unit that comes on 
first generates the vector stored along its 
output wire at  the inputs of the vector 
units. In this way, in a stable state one label 
unit is on and the vector connected to that 
label appears at  the outputs of the vector 
units. 

This circuit performs a minimum dis- 
tance classification. The input vector is 

compared with all the stored vectors in 
parallel, and the circuit determines which 
of them most closely matches the input 
vector (common 1’s  are counted). 

Extensive tests with 10 stable states, 
each 40 bits long, programmed into the 
associative memory circuit showed that the 
circuit converges to a stable state in 50 to 
600 nanoseconds.2 Associative recall per- 
formed reliably, and we observed only the 
stable states programmed into the circuit; 
we saw no spurious stable states. The con- 
vergence time depends on how closely the 
input vector resembles the stored states. 
Additional tests run with up to 20 stable 
states, each 30 bits long, programmed into 
this circuit obtained similar results. 

In this circuit the stored data are repre- 
sented locally in the interconnection 
matrix. This means that a stored bit can be 
localized at one or two of the interconnec- 
tions. In contrast, other circuits based on 
neural network models use a distributed 
representation of the data (e.g., the outer 
product of a stored vector determines the 
distribution of the connections). 

The great interest in associative memory 
circuits implemented with neural network 
models has resulted in the description of 
several programming  method^.^" Experi- 
ments conducted with this type of associa- 
tive memory soon made clear the far 
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Figure 7. The interface connecting the chip to a minicomputer. The network chip is 
on the left side of the board. The other chips control the data exchange with the 
computer. 

superior results given by local representa- 
tion of data. With distributed representa- 
tion of data, the different stored vectors 
influence each other because they share the 
same interconnections. This leads to 
unwanted spurious stable states and to 
erroneous recalls of vectors that do not 
correspond to the nearest neighbor. 

These problems do not exist in the cir- 
cuit we describe here. We observed relia- 
ble recall of the nearest neighbor and no 
unwanted stable states. Moreover, the 
storage density is considerably higher with 
this circuit. With a distributed representa- 
tion of the data, it would hardly be possi- 
ble to get 20 arbitrary stable states in this 
circuit. But the arrangement described 
here still does not use the interconnections 
of the chip efficiently. None of the connec- 

tions among the vector units are used. In 
the case of 10 stored vectors, this means 
that less than one third of all the connec- 
tions are used. 

With the present chip we do not see a 
way to further increase storage efficiency. 
However, a design optimized for this new 
associative memory circuit can achieve 100 
percent storage density.2 This means that 
one RAM cell stores one bit. In contrast, 
associative memory circuits with dis- 
tributed representation of data typically 
require five or more RAM cells to store 
one bit. High storage efficiency is crucial 
for an electronic implementation. Other 
researchers have recently proposed circuits 
similar to the associative memory we have 
de~cribed.’.~ 

We can configure the circuit to move 

through a sequence of vectors by placing 
a vector along the output line of a label 
that differs from the vector along its input 
line. Mixing connections of two vectors 
can stabilize the circuit at a vector and 
make it sensitive to the next vector in the 
sequence only. When the input lies within 
a set range of this vector, the circuit will 
move to the next stable state. Otherwise, 
it just stays in its present state. Other ver- 
sions of programming techniques allow 
for omissions and branches in a parsed 
sequence of vectors.” 

Examples of 
applications 

In order to evaluate the behavior of the 
circuit in an application, we used it in a 
character recognition experiment. An 
interface connected the chip to a minicom- 
puter to handle the transfers of the large 
amounts of data characteristic of image 
processing requests. 

Figure 7 shows the board with the net- 
work chip and some additional off-the- 
shelf integrated circuits to control data 
flow. Data transfers can be made directly 
from the minicomputer’s memory to the 
chip at a rate between one and two mega- 
bytes per second. This rate is limited by the 
interface and the minicomputer and not by 
the chip. One complete processing cycle, 
which includes loading the input vector, 
accomplishing a computation with the cir- 
cuit, and reading back the result into the 
computer, requires approximately 25 
clock cycles or 25 to 50 microseconds. 
Most of the time is required for reading the 
data in and out. The processing in the cir- 
cuit requires only one clock cycle. 

The whole process of recognizing a 
character proceeds as follows: A hand- 
written character is read with a camera, 
digitized, and then normalized in size to fill 
a 128 x 128-pixel frame. The image is then 
coarse-blocked into a 16 x 16-pixel binary 
image. After this, the character is 
skeletonized-the width of the lines is 
reduced to one pixel-and the skeletonized 
picture is searched for a number of geo- 
metrical features. The positions of these 
features are compared to a training set and 
a best match with one of these training 
characters is determined. Of this whole 
process, the line thinning and the feature 
extraction have been mapped onto the 
chip; the minicomputer accomplishes the 
remaining operations. 

Figure 8 shows an example of a result of 
the line thinning operation. The chip is 
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used in the configuration of Figure 5 for 
this task. Stored in the circuit are 20 differ- 
ent vectors, each representing a 5 x 5-pixel 
area. The input vector to the chip is a 
5 x 5-pixel region of the character image, 
which we will refer to as a card. Based on 
which label units are on after a run, a deci- 
sion is made whether or not to delete the 
center pixel of this card from the image. 
For the next run the card is shifted by one 
row or column of pixels on the image; this 
new card is used as the input vector. In this 
way the whole picture is scanned. For each 
pixel position, a processing cycle is accom- 
plished with the appropriate card as the 
input vector. For each pixel in the image, 
a decision has to be made whether that 
pixel makes the line fat or whether its pres- 
ence is crucial to keeping intact the connec- 
tivity of the character. 

Figure 9 shows an example of a vector 
stored in the circuit to make one such deci- 
sion. If the label connected to this vector 
turns on, then the center pixel is part of a 
diagonal line or a corner and that line is at 
least two pixels wide. In this situation, the 
pixel can be deleted without destroying the 
connectivity of the character. The 20 vec- 
tors stored on the chip analyze the neigh- 
borhood of each pixel for all the 
configurations that allow its deletion. All 
the computation needed to decide whether 
a pixel can be deleted is done in one clock 
cycle. A total line-thinning operation 
requires about three scans across the whole 
character, depending on the width of the 
lines because only boundary pixels are 
deleted. 

Line thinning is an important step in 
machine vision, not only in character 
recognition, but also in tasks like finger- 
print analysis and inspection of manufac- 
tured parts. Many algorithms have been 
developed to handle this problem.” The 
algorithm implemented with the network 

Figure 8. The result of a line-thinning operation on a handwritten “3.” The gray 
area represents the original character, and the black area is the portion that remains 
after three thinning scans. 

circuit does not differ fundamentally from 
other pixel-based algorithms. The stored 
vectors facilitate making the same type of 
tests as those formulated in the other 
algorithms with a set of Boolean func- 
tions. Most other algorithms base their 
decision on a 3 x 3 area around the pixel 
under test, since the test of larger areas 
becomes very time consuming. However, 
with the network it is not a problem to ana- 
lyze the larger 5 x 5 pixel area, since it still 
takes only one clock cycle. Using a larger 
area makes the algorithm more robust, 
and it supports integrating some smooth- 
ing to enhance the thinning operation. 

To accomplish the extraction of geomet- 
rical features, 40 vectors are stored in the 

I I I I I I 
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Figure 9. One of the kernels stored in 
the chip for the line-thinning operation. 
If the label connected to this vector 
turns on, the center pixel is erased in the 
image. The black pixels are coded as 
excitatory connections (+) and the gray 
pixels as inhibitory connections (-). 
The bias is set to - 4. The label turns on 
whenever five black pixels in the image 
correspond to the black pixels in this 
kernel and no black pixel in the image is 
at a position of a gray pixel in the ker- 
nel. Then, the center pixel is a part of 
the boundary of a thick diagonal line or 
a corner and can be deleted. 
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circuit. Each one looks for a feature like 
a straight line, an endpoint of a line, a cor- 
ner, crossing lines, or an arc. Whenever 
one of these features is present in the 
image, the label of this feature-vector turns 
on. 

The image is scanned sequentially, as 
described for the line-thinning operation. 
For every pixel position, a 7 x 7 pixel 
neighborhood is searched in parallel for 
the 40 different features. Such a scan 
results in 40 feature maps that indicate 
where particular features occur. To com- 
press this large amount of data, the reso- 
lution of the feature maps is then reduced 
from 16 x 16 to 3 x 3 positions. These fea- 
ture maps are compared with reference 
characters and the best match is chosen. 
Currently, the minicomputer accom- 
plishes this last matching operation, but a 
way to map this final operation onto the 
network circuit is under development. 

The successful recognition rate for 
hand-written digits is approximately 90 
percent. We assume that we can improve 
this rate considerably by using finer reso- 
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lution for the character images as well as 
the feature maps. We now use only local 
geometrical features of a maximum size of 
7 x 7 pixels. We can expect better results 
when large features such as long strokes or 
large circles are generated first from these 
local features. However, the main purpose 
of this experiment was to  test the circuit’s 
performance and to gain experience pro- 
gramming different algorithms into the 
network. We have not yet pushed the anal- 
ysis to find the highest recognition rate. 

Character recognition based on feature 
extraction is more robust against distor- 
tions than simple template-matching 
algorithms that compare the pixel posi- 
tions of the whole character to reference 
data. Feature extraction is one of the most 
versatile functions of low-level machine 
vision and can be applied to many 
problems. 

Discussion 
We have tested the circuit with several 

programmed algorithms and conclude 
that a network like this one is reliable and 
robust enough for applications. We 
designed this circuit to study the behavior 
of a large analog network and did not 
specialize it for any particular application. 
Since input and output of data limit the 
processing, we must optimize the 1/0 
structure in new designs for particular 
applications. 

The analog portion of the circuit 
represents a very powerful processor. With 
50 stored vectors, each 50 bits long, the 
chip completes a processing cycle in less 
than one microsecond. This means that the 
circuit evaluates 50 inner products between 
two 50-bit vectors per microsecond. On a 
standard microprocessor this computation 
would require more than one hundred 
instructions. 

A new chip being fabricated was 
designed specifically for image processing. 
Theinput vector is shifted in a shift regis- 
ter along the inputs of the amplifiers. In 
this way a new input vector is ready for a 
computing cycle at each clock cycle when 
a card of 8 x 12 pixels is scanned over an 
image. I t  is possible to store 46 vectors, 
each 96 bits long, and simulations indicate 
that a complete program cycle can be 
accomplished in approximately 100 
nanoseconds. 

This circuit will evaluate several hun- 
dred million inner products between two 
%bit vectors per second. For example, the 
circuit can do the line-thinning operation 

described above at a rate of a few hundred 
microseconds per character compared to 
the few hundred milliseconds per charac- 
ter a standard computer takes.” (With 
character sizes of 32 x 32 pixels, each scan 
requires 10’24 cycles if the whole area is 
scanned; about three scans are required.) 

This new design is fabricated with the 
same conservative 2.5 micrometer CMOS 
process. Switching to smaller design rules 
will allow packing considerably more cir- 
cuitry on a single chip. Also, since this net- 
work is implemented with a standard 
digital fabrication process, it can be com- 
bined easily with other memory and 
processor modules on the same chip to 
enhance its versatility. 

A system concept with a layered struc- 
ture is also under development. In this 
scheme a layer of network processors is 
followed by a memory module, with 
several of these units stacked in series. In 
an application like character recognition, 
the different tasks such as line thinning or 
feature extraction are then done in differ- 
ent processor layers. Each layer of proces- 
sors inputs the data from the memory 
module below it and outputs its results in 
the memory module above it. 

The data flows mainly in one direction, 
from the raw data at the input of the lowest 
layer to the output layer that does the pat- 
tern identification. However, communica- 
tion is also provided in the opposite 
direction, so that results from a higher 
layer can determine the operation per- 
formed in a lower level. This feature facili- 
tates scanning certain areas in the image 
with a different resolution, or scanning the 
image for different features when the 
results in the higher levels are ambiguous. 
We need additional research on the map- 
ping of different algorithms into the net- 
work, and how to format the data 
optimally to feed from one network into 
the next with minimal intermediate refor- 
matting. 

he network described provides a 
flexible tool because it can evalu- T ate Boolean expressions and 

arithmetic equations. Methods of statisti- 
cal as well as structural pattern recognition 
can be mapped into the chip. Ideas from 
the artificial intelligence community on 
bit-mapped classifiers” suggest that 
expert systems could be made from this 
network. With all theseelements at hand, 
this network looks promising for building 
powerful recognition systems. 0 
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