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Taming Chaos-Part I: Synchronization 
Maciej J. Ogorzalek, Senior Member, IEEE 

Abstract-The possibility of synchronization of systems inher- 
ently operating in a chaotic mode is analyzed. The Pecora-Carroll 
concept of synchronizable response subsystems and chaotic driv- 
ing is described. Possibilities of synchronization using linear 
coupling of the chaotic systems are also considered. Potential 
applications of synchronized chaotic systems in signal processing 
are discussed and analyzed in examples using Chua’s circuits. 

I. INTRODUCTION 
URING THE last decade, we observed a tremendous D increase of interest in chaotic phenomena in a variety 

of physical systems (examples of what is commonly called 
“complex behavior” come from nuclear physics, laser optics, 
solid state physics, biology and medicine, socioeconomics, 
electrical engineering, mechanical and chemical engineering, 
and many other subject areas). In parallel with observations 
of complexity and chaos, there was an avalanche develop- 
ment in research allowing us to take measurements, analyze 
experimental data, quantify the behavior, and understand the 
underlying mechanisms. The results of this research can be 
found in thousands of conference and journal papers, books, 
and workshop and seminar presentations. 

Despite this widespread interest, until very recently, the 
domain of chaos was considered an academic one, without 
deeper implications for real life applications. Chaos was 
considered rather an unwanted phenomenon, often hazardous 
for the operation of real physical systems, causing their 
malfunctioning and thus being a regime of operation to be 
avoided. In fact, the methods developed by scientists studying 
chaos, if used in applications at all, were used for designing 
chaos-free systems. 

However, in real-life situations, we encounter chaos in 
normal system operation. Let us give two examples only: 
the first one, the dynamics of weather (climate), an enormous 
and extremely complex system exhibiting an abundance of 
dynamic behaviors on the macro scale; and the second one, 
the human brain, operating in chaotic mode on the micro scale 

Looking at these two types of chaotic systems, we wonder 
whether it is possible at all to find mechanisms for extemally 
influencing their functioning (e.g., controlling rainfall) and, 
on the other hand, how one can explain and possibly use, 
for other purposes, the amazing ability of performing useful 
tasks like signal processing (in many cases, with irreproducible 
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excellence) out of cooperation of a large number of chaotic 
subsystems (as in the case of the brain) [22], [24]. 

There are three basic problems to study: 
1. How to influence or even better control the behavior of 

a system operating in a chaotic regime? 
2. How extremely complex systems operating in chaotic 

mode “organize themselves” in performing useful tasks? 
3.  What are the underlying mechanisms enabling the inter- 

actions between subsystems, each operating in a chaotic 
mode, producing such useful behavior, and how can 
these mechanisms be used in building other systems of 
practical importance? 

In this paper, I would like to give some answers to these 
kinds of questions-the basic answers for the simplest possible 
systems and their interconnections. In the first part, I describe 
the concept of synchronization of chaotic systems, which can 
be viewed as the simplest kind of useful cooperation of chaotic 
systems. I also describe possible applications of such synchro- 
nized chaotic systems. As we will see, synchronized chaotic 
systems can have some interesting applications in signal pro- 
cessing and communication. It is also believed that synchro- 
nization plays a crucial role in information processing in living 
organisms, and leaming synchronization mechanisms in large 
interconnections (arrays) of chaotic systems could lead to even 
more exciting applications, e.g., in image or speech processing. 

In the second part, I consider possibilities of controlling 
chaotic systems, i.e., influencing systems operating in a chaotic 
mode in such a way to produce a desired, prescribed type of 
behavior. Having good control algorithms for simple chaotic 
systems and very powerful computational tools, one could 
start to think about more serious real life applications like 
controlling chaotic vibrations in airplanes, turbulent flows of 
fluids in chemical reactors, and many others. I believe that 
many applications are still beyond our imagination. 

Throughout this paper, I concentrate on examples coming 
from electrical and electronic engineering, in most examples 
using a now standard chaotic electronic circuit: the Chua’s 
oscillator [7], [17]. 

I do not claim that the problems are solved, and there are 
algorithms ready to apply. Instead, I give an overview of ex- 
citing research activities carried out in laboratories around the 
world promising to soon take advantage of chaotic behavior. 
One should bear in mind that the algorithms and methods used 
are also applicable to other physical systems. Interested readers 
are referred to the listed literature. 

11. SYNCHRONIZATION IN CHAOTIC SYSTEMS 
The possibility of two or more chaotic systems oscillating 

in a coherent, synchronized way is not an obvious one. 
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Fig. 1. Phase plot showing synchronization in the s.-coupled Chua’s circuits 
for 6, = 0.5 (horizontal axis: y, vertical axis: y’). In (a), a transient before 
reaching synchronization is clearly visible; when the transient dies out, nearly 
perfect synchronization is obtained in (b). 

Considering one of the main features often mentioned in 
the definitions of chaotic behavior, namely, the property of 
sensitive dependence on initial conditions (instability in the 
Lyapunov sense), one could conclude that synchronization 
is not possible, because it is not possible in real systems 
either to reproduce exactly the same starting conditions or 
to match exactly the parameters of two systems. We are 
able to build “nearly” identical systems, but there is an 
inevitable technological mismatch and noise, impeding exact 
reproduction of all parameters. Thus, any even infinitesimal 
change of any parameter will eventually result in divergence 
of nearby starting orbits. 

Fig. 2. Phase plot showing synchronization in the I-drive configuration of 
Chua’s circuits (horizontal axis: y. vertical axis: y’). 

The Lyapunov stability concept of trajectories in a single 
system is not the proper one to analyze synchronization of 
two or more systems. In such a case, one should ask what 
are the conditions that imply the convergence of trajectories 
of the two systems rather than consider the stability of each 
one alone. In other words, having two (or more) nonlinear 
systems ( N  2 2): 

kt = z E R7L, 1 5 i 5 N (1) 

we would like to find conditions under which their solutions 
will converge to each other, i.e.: 

limt”(zi - zj) = 0, i # j ( 2 )  
There is no general answer to this problem. Below I describe 
some concepts for obtaining coherent (synchronous) operation 
of chaotic systems. 

2.1.  Linear Coupling 
The simplest possibility considered in several papers [8], 

[19] is the linear coupling of the two systems we would like 
to synchronize: 

2 = fl(X) 

Y = f i ( Y )  + A(Z - Y) (3) 

where x, y E R”, A = diag [SI,. . ’ , br1lT. 
The synchronization problem is formulated as follows: Find 

A such that y(t) ---f x ( t )  for t ---f CO (i.e., the solution y ( t )  
will synchronize with the signal x ( t ) ) .  

This kind of linear coupling has been used for some 
particular types of systems. (The example of Chua’s circuit 
is described below.) KoCarev et al. [20] have given some 
theorems concerning the convergence of solutions z and y. 
The following are the most interesting results: 

Case f l  = fi: 
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Theorem I :  If f l  = f i  and Ix(t = 0) - y(t = !)I [20] 
is sufficiently small, then there exist finite values S,, with 

goal z ( t ) .  
i = 1, 2 , . . . , r ~ ,  such that for h, > 8, y ( t ) ,  approaches the 

.(U 
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Case .f1 # f2: For simplicity, I assume that 6, = k,  for all 
i = 1. 2 , .  . . , rL. Equation(3) can be rewritten as: 

where k is a real nonnegative parameter. 
Theorem 2: For c = h-l and sufficiently small Ix(t = O ) ( +  

Ig(t = O)i ,  there exists t o  such that y( t )  converges uniformly 
to z ( t )  as E + Of on all closed subsets of to < t < ca. 

These two theorems give some very general conditions for 
synchronization. Theorem 2 not only enables us to treat the 
case when there is a parameter mismatch, but the systems 
are nearly identical, but can also be applied for obtaining 
synchronization of systems with quite different dynamics! One 
should note, however, that the problem of choosing the initial 
conditions of the two systems is of particular importance: the 
theorems do not tell us much about the regions of convergence. 

In (‘) 

2.2. Pecora-Carroll Drive-Response Concept 
Thus far, the most effective and widely studied approach is 

due to Pecora and Carroll [4], [SI, [6], [27],  [28], who proposed 
a solution to a class of synchronization problems. 

They considered an n-dimensional autonomous system gov- 
erned by a state equation of the form: 

dn: 
d t  - = f (x( t ) j  

Divide the system into two parts in an arbitrary way, thus 
dividing the state vector into 2: = [::I. The D part is referred 
to as the driving subsystem, and the R part is referred to as 
the response subsystem respectively. Then: 

where L.D = [ ~ l > . . . . . c , ~ ] ~ ,  L R  = [.r7,L+~,..~,.rn] T , 9 = 

[fl(n:j?.,f,L(J)lT> h = [ .~m+1(.r) , . . . .Sn( . I . ) IT.  
Pecora and Carroll suggested building an identical copy of 

the response subsystem and drive it with the .I‘D variables 
coming from the original system. In such a situation, we obtain 
the following equations: 

( 7 )  

Let us next examine the difference A:cn = :I:; - XR. The sub- 
system components zn and .; will asymptotically approach 
each other (synchronize) if Axn - 0 for t t M. In the 
limit, this leads to the variational equations for the response 
subsystem: 

out Q 

Fig. 3. Block diagram of the transmission system using chaos switching 
technique. 

R R 

Fig. 4. Transmitter circuit: Chua’s circuit with a variable capacitor. 

where D,, denotes the Jacobian of the response subsystem 
with respect to ZR only. The behavior of the solutions of this 
system depends on the so-called conditional (depending on 
z ~ )  Lyapunov exponents measuring the average convergence 
or divergence rate of nearby points in the state space. 

Pecora and Carroll proposed the following necessary con- 
dition for chaotic synchronization. 

Theorem: The subsystems ZR and x& will synchronize only 
if the conditional Lyapunov exponents are all negative. 

This methodology has been successfully applied to obtain 
chaos synchronization in coupled Lorenz systems [25],  Rossler 
systems [27], and the hysteretic circuit [4]. Finally, Pecora 
and Carroll proposed a specific laboratory circuit for studying 
synchronization phenomena [5]. Interesting results have been 
also obtained for coupled Chua’s circuits. Some of these are 
presented in the following section. 

2.3. Synchronization Examples: Chua ’s Circuit 
Several experimental studies have been carried out to show 

chaotic synchronization [SI. Extensive experimental studies 
were done using Kennedy’s [ 171 implementations of Chua’s 
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Fig. 5 .  Receiver circuit built by using two partial Chua‘s circuits 

circuits. It seems that experiments using Chua’s circuits are the 
easiest to perform, and some of the details are given below. 

Coupled Chua’s Circuits: Let us consider a linear coupling 
of two Chua’s circuits: 

.i: = a ( y  - z - f(z)) + SZ(Z’ - .) 
$ = x - y - z + by(?// - :Y> 
i = -py + 6,(%’ - %) 

i’ == (y(y’ - It.’ - f (XI)) + 6 , ( x ;  - It.’) 

2’ + 6,(Y - w ’ )  7j’ = 5’ - .y’ - 

i’ = -/3y’ + b , ( Z  - z’) 
. 

(9) 
Chua et al. [SI have shown that two coupled Chua’s circuits 
characterized by (Y = 10.0, Lj = 14.87, o. = -1.27, b = -0.68 
will synchronize; i.e., the solutions of the two systems will 
approach each other asymptotically for the following sets of 
parameters 6: 

1. 6, > 0.5, 6, = 6, = 0, 
2 .  6, > 5.5, 6, = 6, = 0, 
3. 2 > h,  > 0.7, 6, = 6, = 0 
In the laboratory experiments, the :r-coupling can be real- 

ized by inserting a R, (6, = C,R/C, R,) resistor between the 
+ terminals of the nonlinear resistors. The y-coupling can be 
realized by connecting an R, (6, = R/R,) resistor between 
the + terminals of C, Capacitors. 

Fig. 1 shows typical phase plots confirming synchronization 
of two chaotic Chua’s circuits in the case of linear coupling. 
Transient behavior before reaching synchronization is clearly 
visible in Fig. l(a). After removing the transient, nearly ideal 
synchronization is obtained (Fig. 1 (b)). 

Synchronization of Chua ‘s Circuits Using the 
Drive-Response Concept: Considering the Pecora-Carroll 
approach, it has been confirmed [SI that in two configurations: 
z-drive configuration for which the state equations read: 

i = a(?/ - 5 - f(x)) 
?/ = Z -‘y - Z 

bl. ’ 
0.5 

0 

. . .  . . .  

time [mil 

Fig. 6. Transmission of digital signals via parameter modulation (chaos 
switching) technique. 0 and 1 states are coded by two different chaotic 
attractors. (a) binary input signal h , , , .  (b) transmitted signal ~ ( t ) .  (c) response 
-lo. (d) response 1,. (e) 40-point moving average of A”. (0 40-point moving 
average of 3 I .  (g) output binary signal I A , ~ ~ I .  

and the conditional Lyapunov exponents are (-0.05: -0.05). 
Fig. 2 shows a typical phase plot confirming excellent syn- 
chronization of chaotic trajectories in this case. y-drive con- 
figuration for which the state equations become: 

i; = (y(y - 5 - f ( : r ; ) )  
’y = .x - y - z 
z = -By 

- f ( 2 ’ ) )  
i’ = a ( y  - 2’ 

i’ = -y,/ (1 1) 
and the conditional Lyapunov exponents were found ( - 2 . 5 ,  0). 

In the z-drive configuration, the subsystems do not synchro- 
nize; one of the conditional Lyapunov exponents was found 
to be positive. 

111. POSSIBLE APPLICATIONS 
The earliest attempts to use random signals in secure com- 

munications date back to 1926, when Vernam published his 
paper [35].  (For the topic of cryptography, see the special 
issue of PROCEEDINGS OF THE IEEE [36].‘ 

‘Vernam proposed to use binary alphabet and the key only one time, i.e., 
to code each bit of the text with a new randomly chosen bit of the key. The 
coding principles were not changed since Caesar‘s times. Each of the letters 
of the text to be coded, ,r ,  has to be replaced by a symbol i /  obtained via 
chosen “modulo” summation with a secret key 3, i.e., i/ = .I‘ ‘ 1 ,  z .  
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Fig. 7. Block diagram of secure communication system employing the 
masking principle. 
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Fig. 8. Schematic diagram of the chaos modulation communication system 
employing two self-synchronizing Chua’s circuits. 

These ideas were explored again in the context of chaotic 
signals and used nearly simultaneously by independent re- 
search groups at the ONR ([6], [29]), University of Califomia 
at Berkeley ([13], [19], [20], [26]), the Massachusetts Institute 
of Technology ([25]), and a joint from the Swiss Federal 
Institute of Technology and University College Dublin ([lo], 
[ISl). 

It is the group of Prof. Leon 0. Chua who published the 
first real circuit implementation and test results proving that 
the ideas of using chaotic signals and synchronized chaotic 
circuits in communication problems is not only useful but 
technically feasible, offering possibly competitive solutions to 
secure communication problems. 

There is also an interesting altemative approach based on 
the information theoretic formalism of chaos reported recently 
in [ 141; however, no implementations have been reported so 
far. 

We will see in the simple examples that a chaos-producing 
system (Chua’s circuit) can be used as the enciphering key. 
This key is fully identified by the actual circuit parameters. 

3.1. Chaotic Switching 
The simplest idea of 
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how chaotic systems can be used 

- 

in data transmission is the parameter modulation or chaotic 
switching [25]. The basic idea is to encode the binary signal 
in terms of different attractors existing for different system 
parameter values in the system (e.g., the 1- corresponds 
to parameter value p1, and further, chaotic attractor AI, 0- 
corresponds to parameter value p2 and a chaotic attractor 
A2). The chaotic system behavior is switched between AI 
and d2; thus, the time response of the system is modulated 
by parameter changes. 

The usefulness of this simple idea has been demonstrated 
by Parlitz et al. [26]. The block diagram of the proposed 
transmission system is shown in Fig. 3. Chua’s circuit has been 
used as a source of chaotic signals Fig. 4. In the simulation 
experiments, the parameters R = 1001 0, Ro = 20 0, 
G, = -1.139 mS, Gb = -0.711 mS, Bp = 1 V were 
fixed, while the other parameters were switched between 
L = 12 mH, C1 = 17 nF and C2 = 178 nF for b,, = 1 
(first parameter set) and L = 13.3 mH, C1 = 18.8 nF, 
and G2 = 197 nF for b,,, = 0 (second parameter set), 
depending on the binary input signal btn( t ) .  In both cases, the 
system possesses qualitatively similar attractors. The voltage 
across the capacitor C1 has been chosen as the signal to be 
transmitted s ( t ) .  The transmitted signal in both cases is chaotic 
and thus broadband. Following the Pecora-Carroll principles, 
the receiver (Fig. 5) is built as a copy of a part of the 
transmitter Chua’s circuit (YA, zA-subsystem #1) with the 
first set of parameters. To determine whether there is indeed 
synchronization, reference signals have to be generated by 
using the known variables .c = v c l  y ~ ,  z.4. For this purpose, 
the subsystem #2 has been added (reproducing the variable 
.EB,). This system synchronizes only for one of the transmitted 
states, i.e., when the quantity A. = z - z ~ 1  = 0. Second, 
Chua’s circuit (built with the second set of parameters) can 
also be added to reproduce the variable 2 ~ 2  and synchronize 
with the chaotic signal in the second state only (AI = 
z - 2 8 2  = 0). The use of two chaotic signals with mutually 
exclusive synchronization properties improves the reliability 
of the system. 

Fig. 6 presents the waveforms obtained in simulations. The 
waveforms represent, respectively, the following: (a) binary 
input signal b,,, (b) transmitted signal s ( t ) ,  (c) response A,, 
(d) response A,, (e) 40-point moving average of Ao, (f) 40- 
point moving average of A,, and (g) output binary signal bout, 
E = 0.1. bout was derived by using the rule: 

0, bold  = 0 for (LO < F ,  a1 > c 
I, bold = 1 for a0 > t, a1 < e 

for (LO < t, a1 < f 
1 - bold for a0 > t, a1 > t 

(12) bout = {bold 

The resulting digital signal bout agrees up to a small time 
delay with the original input signal n,,. Parlitz et al., in their 
study [26], for the first time presented results of laboratory 
experiments demonstrating the applicability of the proposed 
method and showing that secure communication using chaotic 
switching is possible and might lead to new developments in 
communication techniques. 
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Fig. 9. Block diagram of the laboratory chaos modulation system. In the divider, W stands for the numerator and D stands for the denominator. 

3.2. Chaotic Masking: Secure Communication 
Another possibility of using chaotic signals for secure 

communication is using them for masking the information- 
carrying signal. This idea has been described by Oppenheim 
et al. [25] and Kocarev et al. [ 191. The information-carrying 
signal is simply added to the masking chaotic signal. In 
[ 191, the authors report on using Pecora-Carroll approach and 
building an experimental set up for secure signal transmission 
based on the masking principle. Again, Chua’s circuit has been 
used as a universal chaotic building block. The diagram of the 
proposed system is shown in Fig. 7. It contains a Chua’s circuit 
in the transmitter part and two partial Chua’s circuits in the 
receiver part. The receiver has exactly the same structure as in 
the case of the previous example (Fig. 5). The first subcircuit 
serves as a decoding key and synchronizes only when exactly 
matched with the transmitter circuit, thus reproducing the 'uta 
signal. The second subcircuit is used for restitution of the 
missing variable wcl needed for recovering the information 
signal by simple subtraction as shown in the block diagram. In 
all laboratory tests in a real circuit implementation, it has been 
confirmed that a chaotic signal can be used as a masking signal 
and that it is possible to decode such a signal successfully by 
using Pecora-Carroll synchronization concept. 

3.3. Chaotic Modulation: Spread-Spectrum Transmission 
The most complex issue offered for secure communication 

has been described in a recent paper by Halle et al. [13]. 
The proposed idea is to multiply the information signal by a 
broad-spectrum, noiselike chaotic signal. 

The transmission system shown in Fig. 8 uses two Chua’s 
circuits. In the transmitting system, a current signal ii(t) 
is injected into the circuit and modifies the voltage across 
the capacitor CI. This current signal depends on the input 
information vs(t) to be transmitted i;( t)  = c(7 is( t ) )  (where 
c is an invertible coding function). The detected current 
signal id is then decoded through vr( t )  = c - ’ ( i d ( t ) ) .  For 
proper operation, it is necessary that vr ( t )  E ws(t). The 
coding function c should be chosen in such a way that 
during transmitter operation for all TJ, ( t ) ,  the transmitted signal 
remains chaotic and looks the same. The voltage across the 
capacitor C1 is transmitted through the channel to the receiver 
circuit and is used-as a forcing voltage on the second Chua’s 
circuit capacitor Cl.  

Assuming that all circuit components of the transmitter and 
receiver are matched exactly, and inserting a voltage buffer 
to separate the two subsystems, we have 61 = v1. Using this 
condition and subtracting the circuit equations describing the 
dynamics of each of the Chua’s circuits, one obtains 

For R, L ,  CZ > 0, we have [13] (v~(t) - 6 z ( t ) )  --f 0 for 
t + CO. This implies also &(t )  + i ; ( t )  and vr(t) 4 v3(t) 
for t -+ cc. 

This means that the current flowing into the second Chua’s 
circuit must equal (possibly after some transient) the current 
injected into the first Chua’s circuit. 

Halle et al. [13] describe the laboratory implementation of 
such a transmission system based on two synchronized Chua’s 
circuits with the division operation c(vs( t ) )  = vs(t)/wl(t)  
chosen as the coding function and multiplication operation 
vr = c(vs(t))711 as the decoding one. The block diagram of the 
implemented system is shown in Fig. 9. This diagram could 
serve as a general principle of a transmission system using 
chaotic modulation. 

The results presented in [13] demonstrate the feasibility of 
using self-synchronizing circuits (and in particular Chua’s cir- 
cuits) to implement spread-spectrum communication systems. 
For the full account of the experimental results, see the original 
paper [13]. I would like to stress here that this kind of chaotic 
signal modulation offers several advantages over the parameter 
modulation or simple masking techniques. First, the whole 
range of the chaotic signal spectrum is used for hiding the 
information. Second, the sensitivity to parameter variation is 
increased, thus offering increased security. 

IV. CONCLUSIONS 
The synchronization principles described in the previous 

sections enable us to build chaotic systems operating coher- 
ently and to use them to solve real communication problems. 
Understanding synchronization phenomena of simple inter- 
connections of chaotic oscillators enabled several interesting 
developments such as switching, masking, and modulation 
using chaotic signals and could also serve as a basis for further 
studies. 
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There already exists a widespread interest in studies of 
higher-dimensional coupled chaotic systems in particular ar- 
rays of chaotic oscillators [I], [ 2 ] ,  131, 191, [ I  11, [151, [161, 
1231, [30], 1311, [34]. These types of systems are important 
as models of biological and physical systems and also from 
the information-processing point of view, offering possible 
engineering applications (e.g., [31]). One can expect a rapid 
development of research in this area. 
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