PHYS 1410: PHYSICAL SCIENCE (FW 2012/2013)

Additional problem for Oct. 2

A ball is thrown from the ground of planet Exidor at $t=0 \mathrm{~s}$, and it follows a parabolic trajectory. The ball's velocity vector at $t=1.0 \mathrm{~s}$ is $\vec{v}(t=1.0 \mathrm{~s})=(2.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$. At $t=2.0 \mathrm{~s}$ the ball reaches its maximum height.

1. Sketch the situation indicating the velocity vectors at $t=1.0 \mathrm{~s}$ and $t=2.0 \mathrm{~s}$.
2. Use Newton's second law to determine the acceleration vector $\vec{a}=a_{x} \hat{1}+a_{y} \hat{\jmath}$.
3. Show that the ball's velocity vector has the form

$$
\vec{v}(t)=v_{0} \cos \theta \hat{\mathbf{\imath}}+\left(v_{0} \sin \theta-g t\right) \hat{\jmath},
$$

where v_{0} is the initial speed and θ the launch angle.
Hint: check $\vec{v}(t=0)$ and show that $\frac{d}{d t} \vec{v}(t)=\vec{a}$.
4. Use the above information on the velocity to obtain the values of g on Exidor, θ, and v_{0}.
5. At what time will the ball hit the ground?
6. What is the range of the ball (i.e., the horizontal distance travelled)?

