PHYS 1410: PHYSICAL SCIENCE (FW 2012/2013)

Additional problem for Oct. 30

Consider an object that moves on a circular path. Starting from the position vector $\vec{r}(t)$ show that the acceleration can be written as

$$
\vec{a}(t)=\vec{a}_{c}(t)+\vec{a}_{t}(t)
$$

with

$$
\begin{aligned}
a_{c} & =\left(\frac{d \theta}{d t}\right)^{2} R \\
a_{t} & =\left|\frac{d^{2} \theta}{d t^{2}}\right| R .
\end{aligned}
$$

Note: consult Sec. 2.6 of the Math Addendum if you have problems with the chain rule.

1. Show that $a_{c}=\frac{v^{2}}{R}$ (where v is the speed of the object). Is a_{c} a constant or does it change with time?
2. Show that $a_{t}=\left|\frac{d v}{d t}\right|$. Is a_{t} a constant or does it change with time?
3. Show that $\vec{a}_{c} \perp \vec{a}_{t}(\text { at all times })^{1}$.
4. Show that $a_{t}=0$ for the special case of uniform circular motion.
[^0]
[^0]: ${ }^{1}$ Consult Sec. 1.5 of Math Addendum

