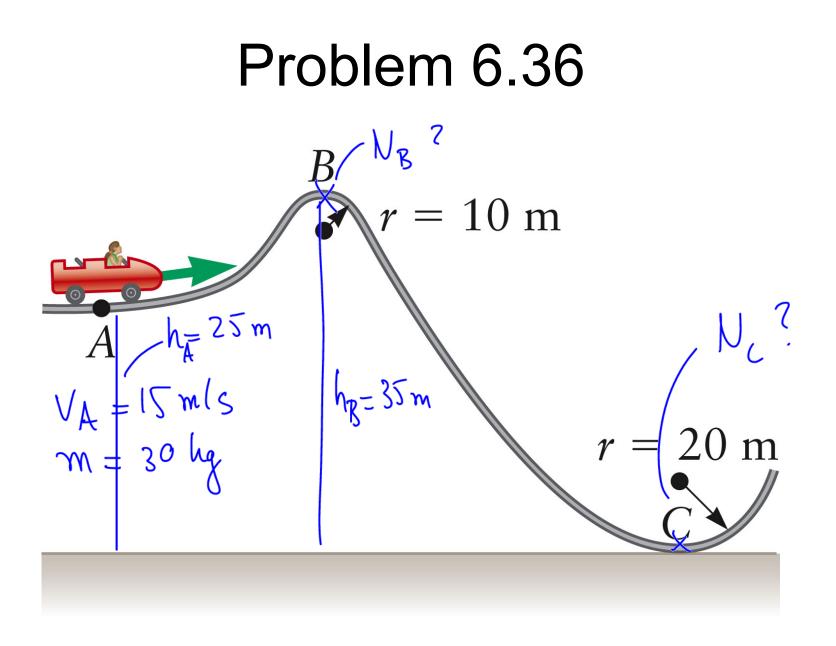
Tutorial Nov 13

Challenge problem #4

For the motion of an object one finds (through observation) the position-time law

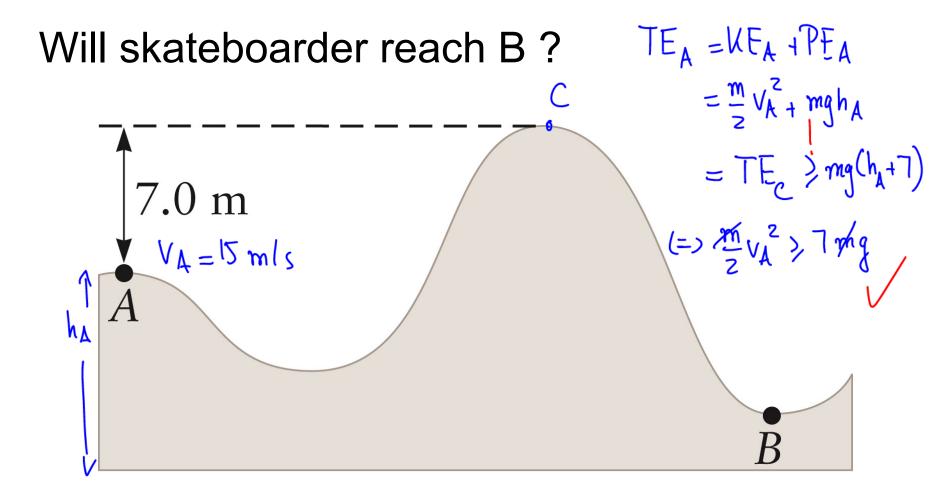
$$x(t) = A\sin(\omega t),$$

where A and ω are positive constants.


- 1. Show that the magnitude of the force F_x that accelerates the object is proportional to |x|.
- 2. Show that the potential energy function associated with this force has the form $V(x) = cx^2$. Is c a positive or a negative constant?
- 3. Calculate the work necessary to displace the object from $x_i = 0$ to $x_f = A$. Does the object speed up or slow down?

(1)
$$V(t) = \dot{x} = Aw \cos(wt)$$
, $a(t) = \dot{v} = -Aw^{2} \sin(wt)$
 $= -w^{2}x(t) = \frac{F_{x}}{m}$
 $CD F_{x} = -mw^{2}x = > |F_{x}| \propto |x|$
(2) check $F_{x} = -\frac{dV}{dx} = -\frac{d}{dx}(cx^{2}) = -2cx = -mw^{2}x$
 $(=> c = \frac{mw^{2}}{2} > 0$
(3) $W = PE_{i} - PE_{g} = V(x_{i}=0) - V(x_{g}=A) =$
 $= 0 - cA^{2} = -\frac{mw}{2}A^{2}$ slave object down.

Problem 6.24


Skydiver jumps from airplane

(a) Wgrav = Fgrav · br = mgh m = 70 kg $h = 1500 \, \text{m}$ $= 1.0 \times 10^{\circ}$ Vterm = & mls (b) $F_{drag}^{ave} = \frac{W_{drag}}{\Delta y}$ $W_{tot} = W_{grav} + W_{drag} = \Delta KE = \frac{m}{2} (V_{q}^{2} - V_{i}^{2})$ = $\frac{m}{2} V_{q}^{2} = \frac{m}{2} V_{torm} = 2240 J = 2W_{drag} = -1.0 \times 10^{6} J$ Warag = Farag Sy (=> Farag = - Warag = + 670 N


· Derive eqs for N_R and N_C (circular motion) ΘB : $ma_B = \frac{mV_B^2}{B} = Frut = mq - V_B$ $(=) V_{B} = m \left(q - \frac{V_{B}^{2}}{V_{R}} \right) = 210 \text{ N}$ $m\alpha_{c} = \frac{mv_{c}^{2}}{mv_{c}} = F_{net} = N_{c} - mg$ 0 $(=) N_{c} = m \left(g + \frac{V_{c}}{V_{c}} \right) = 1400 \text{ N}$ Determine $V_{B_1}V_c$ from $\Delta TE = O(=)(TE)_A = (TE)_R$ $\frac{m}{2}V_{B}^{\prime} + \frac{mgh_{B}}{2} = \frac{m}{2}V_{A}^{2} + mgh_{A}$ $^{(0)}$ B m² s² $(=) V_{B} = V_{A} + 2q(h_{A} - h_{B}) = 29$ $V_{c}^{2} = V_{A}^{2} + 2gh_{A} = (715 \frac{m^{2}}{c^{2}})$ $\mathbf{\hat{O}}$

Problem 6.38

Problem 6.58

Compress spring and release it

