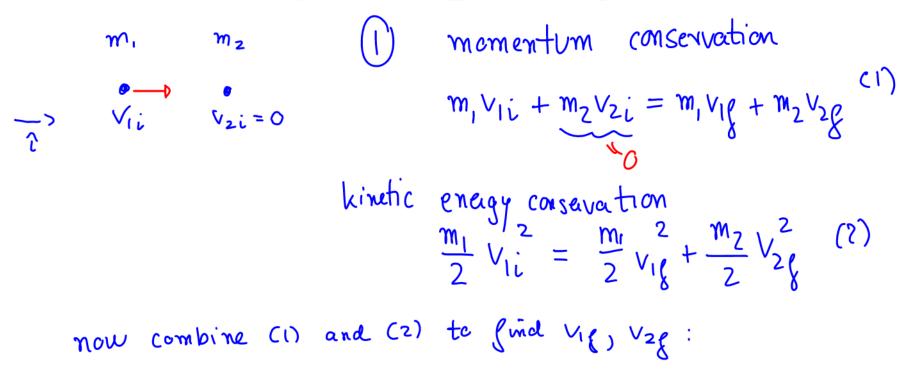

Tutorial Nov 20

Problem 6.92

(a) Use
$$(TE)_{i} = (TE)_{g}$$

 $(TE)_{i} = \frac{m}{2} V_{i}^{2} + \frac{k}{2} \chi_{i}^{2} + mghi$
 $(TE)_{g} = \frac{m}{2} V_{g}^{2} + mghg$
 $(TE)_{i} = \frac{k}{2} \chi_{i}^{2} + mghfi$
 $(TE)_{i} = \frac{k}{2} \chi_{i}^{2} + mghfi$
 $(TE)_{i} = \frac{k}{2} \chi_{i}^{2} + mghfi$
 $= (TE)_{g} = \frac{m}{2} V_{g}^{2} + mg \chi_{i} \sin \theta + mghi$
 $(TE)_{i} = \sqrt{k} \chi_{i}^{2} - \lambda g \chi_{i} \sin \theta = 0.75 m/s$


Maximum distance
$$\times \max$$

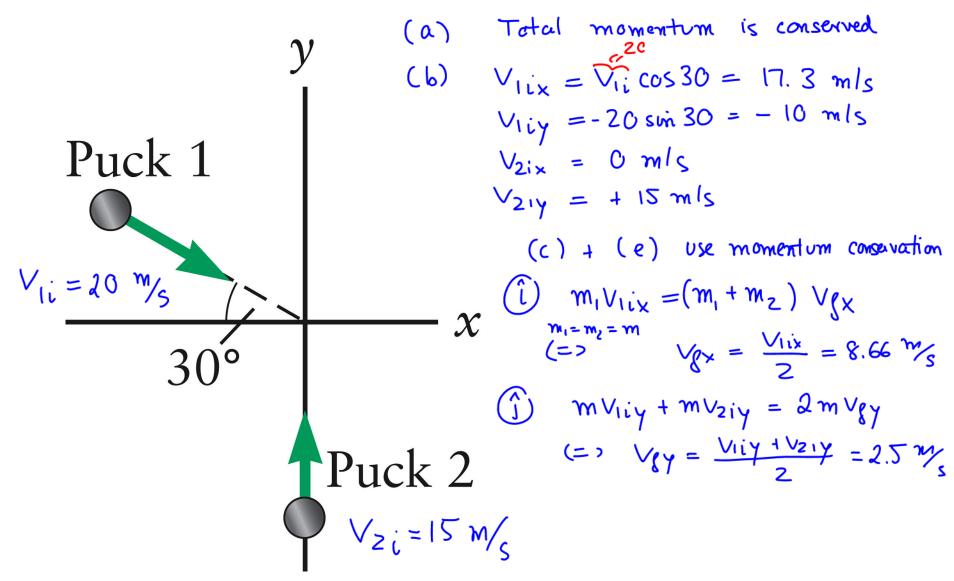
energy conservation $(again): (TE)_{g} = (TE)_{max}$
 $\frac{m}{2}V_{g}^{2} + mghg = mghmax$ $h_{max} = \chi \max \operatorname{sme} + h_{i}$
 $hg = \chi \operatorname{i} \operatorname{sme} + h_{i}$
 $(=) \frac{V_{i}^{2}}{2} + g\chi \operatorname{i} \operatorname{sin} e = g\chi \max \operatorname{sin} e$
 $(=) \chi \max = \frac{V_{i}^{2}}{2g \sin e} + \chi \operatorname{i} = 20 \text{ cm}$

(6)

Additional problem for Nov. 20

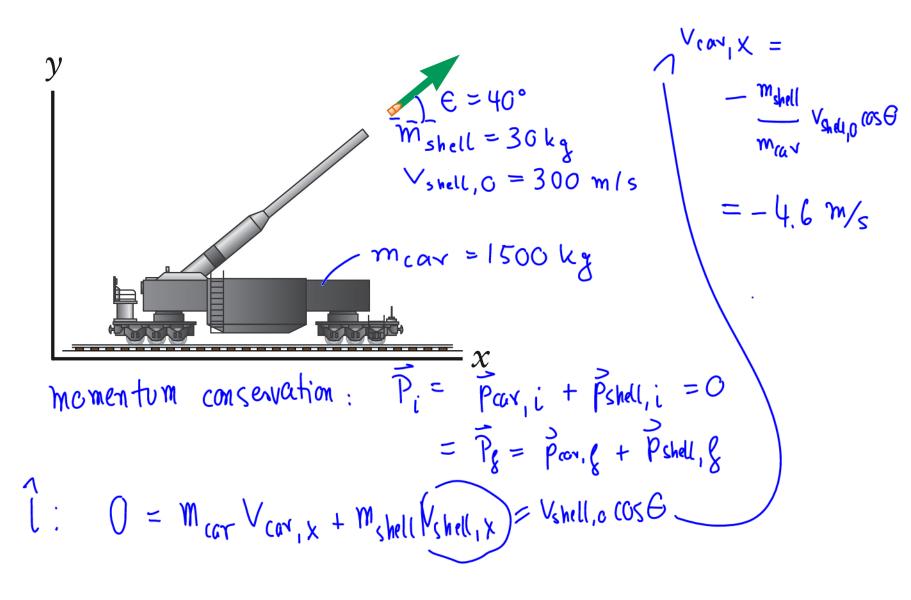
Consider an elastic head-on (i.e. one-dimensional) collision that involves two objects of mass m_1 and m_2 . The latter mass is initially at rest.

- 1. Starting from momentum and energy conservation derive equations for the final velocities of both objects after the collision.
- 2. What happens if $m_1 = m_2$?
- 3. Calculate the final velocities for $m_1 = 2.5$ kg, $m_2 = 4.2$ kg, and $v_1 = 12$ m/s.
- 4. Assume now that both objects stick together after the collision. Derive a formula for the final velocity and calculate it.
- 5. Calculate the change in total kinetic energy ΔKE for the sticky collision.


(1)
(=)
$$V_{1g} = V_{1i} - \frac{m_2}{m_1} V_{2g}$$
 (3)
insort in (2): $m_1 V_{1i}^2 = m_1 (V_{1i} - \frac{m_2}{m_1} V_{2g})^2 + m_2 V_{2g}^2$
(=) $V_{1i}^2 = V_{1i}^2 - 2 \frac{m_2}{m_1} V_{1i} V_{2g} + (\frac{m_2}{m_1})^2 V_{2g}^2 + \frac{m_2}{m_1} V_{2g}^2$
(=) $2 \frac{m_2}{m_1} V_{1i} V_{2g} = V_{2g}^* (\frac{m_2^2 + m_1 m_2}{m_1^2})$
(=) $V_{2g} = 2V_{1i} \frac{m_1}{m_1 + m_2}$
insort in (3) $V_{1g} = V_{1i} - \frac{m_2}{m_1} (m_1 + m_2) 2V_{1i} = \frac{m_1 - m_2}{m_1 + m_2} V_{1i}$
(2) special case $m_1 = m_2$: $V_{1g} = 0$, $V_{2g} = V_{1i}$

• another special case:
$$m_1 \ll m_2$$
 such that $m_1 \pm m_2 \approx \pm m_2$
 $C \supset V_1g = -V_1i$ (reflection)
 $V_2g \ll V_1g$
(3) $V_1g = -3.0 \text{ m/s}$, $V_2g = 3.0 \text{ m/s}$
(4) Stickly collision: $m_1V_1i + m_2V_2i = (m_1+m_2)Vg$
 $C = V_g = \frac{m_1V_1i}{m_1+m_2} = 4.5 \text{ m/s}$
(5) $KE_i = \frac{m_1}{2}V_{ii}^2$, $KE_g = \frac{m_1+m_2}{2}V_g^2$
 $C \supset KKE = KE_g - KE_i = \frac{1}{2}\left[(m_1+m_2)V_g^2 - m_1V_{1i}^2\right]$
 $= -(10]$

Problem 7.20


Completely inelastic = sticky collision of masses m and 3m; combined system at rest after collision

Problem 7.24: 2D sticky collision

(d) It's an inelastic collision.
(g)
$$KE_i = \frac{m}{2}V_{ii}^2 + \frac{m}{2}V_{zi}^2$$

 $KE_g = \frac{2m}{2}V_g^2 = m(V_{gx}^2 + V_{gy}^2)$
 $fraction = \left|\frac{\Delta kE}{kE_i}\right| = \frac{kE_i - kE_g}{kE_i} = 0.74$

Problem 7.34

