Tutorial Nov 6

Problem 5.48
By what factor is the force of gravity smaller when you are in a geosynchronous orbit than when you are on the Earth's surface?

$$
\begin{aligned}
& F_{\text {gram }}=\frac{G m H_{E}}{r^{2}} \quad \begin{array}{c}
\text { class: } \\
\text { (kepelisid law) }
\end{array} \quad r_{60}=\left[\frac{G M_{E} I^{2}}{4 T^{2}}\right]^{13} \\
& R=\frac{F_{G 0}}{F_{\text {grave }}^{\text {Eth }}}=\frac{r_{E}^{2}}{r_{G 0}^{2}}=\frac{1}{(6.6)^{2}}=0.023 \\
& \stackrel{T=1 \text { day }}{=} 4.2 \times 10^{7} \mathrm{~m} \\
& =6.6 r_{E}
\end{aligned}
$$

Problem 5.64

(a) max range (who air drag) projectile motion: $\Delta x=\frac{V_{0}^{2} \sin 2 \theta}{q} \stackrel{\theta=15^{\circ}}{=} \frac{V_{0}^{2}}{g}$ need

$$
v_{0}=w r=2 \pi f^{r_{i}=}=47 \mathrm{~m} / \mathrm{s} \quad \Rightarrow \Delta x=\frac{V_{b}^{3}}{g}=230 \mathrm{~m}
$$

(b) max) tension in cords:

FBD (rock at bottom)

$$
\begin{array}{ll}
\hat{T}_{T_{\text {max }}} & F_{\text {net }}=T_{\text {max }}-m g=m a_{c}=m \frac{V_{0}^{2}}{r} \\
i \vec{F}_{\text {grow }} & \Leftrightarrow \\
i_{\text {max }}=m\left(g+\frac{V_{0}^{2}}{r}\right)=220 \mathrm{~N}
\end{array}
$$

sling has two cads: $T_{1}=T_{2}=\frac{T_{\text {max }}}{2}=\| 0 \mathrm{~N}$

Problem 5.68

Planet Tungsten:
(a) gravitational acceleration
(b) period of rotation
(a) $g_{T}=\frac{G H_{T}}{r_{T}{ }^{2}}=\frac{G r_{T}}{\left(2 r_{E}\right)^{2}}$

$$
\left.g_{E}=\frac{G H_{E}}{r_{E}^{2}}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

given.

$$
\left(M \approx \frac{4 \pi}{3} r^{3} \zeta\right) \quad M_{T}=\frac{4 \pi r_{1}^{3}}{3} r_{T} Q_{T}=\left(\frac{4 \pi}{3} r_{E}^{3} Q_{E}\right) \times 16=\left(6 \mu_{E}\right.
$$

$C_{p} \quad g_{T}=\frac{16 G M_{E}}{4 r_{E}^{2}}=4 g_{E}=39 \mathrm{~m} / \mathrm{s}^{2}$
(b) Questions says: N (equator of Tungsten) $=m g_{E}$

$$
\begin{aligned}
& C_{D} \quad F_{\text {net }}=m g_{T}-N=m\left(g_{T}-g_{E}\right)=3 m g_{E} \\
&=m a_{C}=m \frac{v_{T}^{2}}{r_{T}}=m\left(\omega_{T}^{2}\right) r_{T}=\left(\frac{2 \pi}{T}\right)^{2} \\
& C \quad \frac{4 \pi^{2} m 2 r_{E}}{T^{2}} \\
& \Leftrightarrow \quad T=2 \pi \sqrt{\frac{2 r_{E}}{3 g_{E}}}=4140 S \approx 69 \mathrm{~min}
\end{aligned}
$$

Problem 6.18

- Rock thrown upward

$$
\left.\Delta y \overline{I_{0}} y_{\text {max }} \text { find } W_{\text {grave }}=F_{\text {grave }} \Delta y\right)^{\text {not given! }}
$$

$\frac{3 y_{i}}{T /}$ use work-enengy the orem instead

$$
\underbrace{v_{l} / 1}_{\substack{m=25 m / s \\ m=0.05 \mathrm{hg}}} \quad W_{\text {grav }}=\Delta K E=\frac{m}{2} v_{f}^{2}-\frac{m}{2} v_{i}^{2}=-\frac{m}{2} v_{i}^{2}
$$

Problem 6.20

- Pushing a refrigerator across kitchen floor
(such that speed is constant)

$$
\begin{aligned}
\left|F_{\text {applied }}\right| & =300 \mathrm{~N} \\
& =\left|F_{\text {sic }}\right|
\end{aligned}
$$

(a) total wok $W=\Delta K E=0$
(b) wat done by friction

$$
\begin{aligned}
& \text { wok done by friction } \\
& \begin{aligned}
W_{\text {agric }}= & \text { Ferric } \Delta x
\end{aligned}=-F_{\text {applied }} \Delta \bar{x} \\
& \\
& =-g 00 z
\end{aligned}
$$

Problem 6.22

- Average force exerted on baseball by pitcher

$$
\begin{aligned}
& V_{f}=50 \mathrm{~m} / \mathrm{s} \\
& m=0.14 \mathrm{ug} \quad \\
& \Delta K E=W=F_{\text {ave }} \Delta X \\
& \frac{m}{2} V_{f}^{2}\left(v_{i}=0\right) \quad \quad F_{\text {are }}=\frac{m}{2 \Delta x} V_{f}^{2}=88 \mathrm{~N}
\end{aligned}
$$

