Principal Component Analysis \&

Data Reduction Hugh R. Wilson

- Purpose of PCA
- Simple example
- Derivation of PCA
- Dimensionality reduction
- More complex example
- How many dimensions?
- Experiment on learning face PCA
- Nonlinear PCA

Reading

- Today: Principal components: Kutz, pp. 387 (bottom) - 393
- Wed: Linear discriminant analysis: Kutz, pp. 442-445

Purpose of PCA

- Simplify data by reducing dimensionality
- Perfect correlation between 2 measurements:
- Redundancy
- Example: nose length = eye separation
- One dimension is irrelevant
- Remove least significant dimensions
- All PCs mutually orthogonal: independent information
- Remove noise (small variances in highest PCs)
- Equivalent to rotation of axes
- Two linearly independent column vectors A \& B
- Assume vectors normalized to unit length
- Covariance: $A^{\prime} \mathrm{B}=\rho_{\mathrm{AB}}$
- A ' is transpose of A
- Make dimensions independent (orthogonal)
- $\cos \left(A B _\right.$angle $)=\rho_{A B}$
- $\mathrm{B}_{\text {new }}=\mathrm{B}-\rho_{\mathrm{AB}} \mathrm{A}$
- $\mathrm{A}^{\prime} \mathrm{B}_{\text {new }}=\mathrm{A}^{\prime} \mathrm{B}-\mathrm{A}^{\prime} \mathrm{A} \rho=\rho-\rho=0$
- Can repeat with vectors C, D, etc. as long as all are linearly independent
- $\mathrm{C}_{\text {new }}=\mathrm{C}-\rho_{\mathrm{AC}} \mathrm{A}-\rho_{\mathrm{BC}} \mathrm{B}_{\text {new }}$

Data for PCA

- Make N measurements on each of M specimens, $\mathrm{M} \geq \mathrm{N}$
- Eg: nose length, eye separation, mouth width, nose width
- Eg: multiple disease symptom measurements on people
- Create data matrix:
- M rows, one for each specimen
- N columns, one for each measurement
- Data represented as M points in N dimensional space
- Can we simplify?

PCA in 2 Dimensions

- Two measurements that are correlated
- PC1 explains 92.5% of the variance
- PC2 explains 7.5% of the variance

PCA Approach

- Use covariance (or correlation) of measurements to reduce dimensionality
- Require PCA dimensions to be orthogonal: independent info
- First PC: accounts for largest \% of variance
- Second PC: accounts for next largest \% of variance

PCA Derivation

- Subtract means from data, D
- Find vector \mathbf{v} to maximize variance of projected data:
- $\operatorname{var}(\mathrm{Dv})=(1 /(\mathrm{N}-1))(\mathrm{Dv})^{\prime}(\mathrm{Dv})=(1 /(\mathrm{N}-1))\left(\mathbf{v}^{\prime} \mathrm{D}^{\prime}\right)(\mathrm{Dv})=\mathbf{v}^{\prime} \mathrm{Sv}$
- S is the data covariance matrix: $(1 /(N-1)) D^{\prime} D$
- Normalization constraint: \mathbf{v} 'v = 1
- Use Lagrange multiplier for constraint \& maximize:
- v'Sv + $\lambda(1-v ’ v)$
- $\left(d / d v^{\prime}\right)\left(v^{\prime} S v+\lambda\left(1-v^{\prime} v\right)\right)=0$
- $\mathrm{Sv}=\lambda \mathrm{v}$
- PCs are eigenvectors of covariance matrix
- Variance explained is λ
- Vector with largest λ is PC1, second largest λ is PC2, etc.
- Equivalent to minimizing mean squared error of representation in lower dimensional space

PCA in Matlab ${ }^{\text {TM }}$

- Data: M rows of subjects $\mathbf{x} N$ measurements on each ($\mathrm{M}>\mathrm{N}$)
- Subtract mean
- Calculate eigenvalues of data covariance
- Project data onto $\mathrm{P}<\mathrm{N}$ PCs (must flip PC matrix left-right)

$$
\begin{gathered}
\text { Dta }=\text { Dta }- \text { ones }(M, 1) * \text { mean }(\text { Dta }) \\
{[P C, \operatorname{Var}]=\operatorname{eig}(\operatorname{cov}(\text { Data }))} \\
P C l r=\operatorname{fliplr}(P C) \\
P C p r o j=\operatorname{Dta} * P C l r(:, 1: P)
\end{gathered}
$$

How Many PCs?

- Decide how much variance is important (eg. 75\%, 90\%)
- Cut off when variance explained drops below average/PC
- Plot variance per component \& look for break (scree plot)

Face Identification

Centre for Vision Research

Synthetic Faces

Face geometry represented by 39 measurements

- Each face: 39 measurements

	PC\#		Variance Cumulative
	1.0000	0.2345	0.2345
	2.0000	0.2192	0.4537
	3.0000	0.1013	0.5549
10 components:	4.0000	0.0818	0.6368
90% of variance	5.0000	0.0654	0.7022
	6.0000	0.0637	0.7658
	7.000	0.0465	0.8123
	8.0000	0.0384	0.8507
	9.0000	0.0292	08799
	10.0000	0.0211	0.9010
	11.0000	0.0150	0.9208
	12.0000	0.0151	0.9359
	13.0000	0.0125	0.9484

Remaining 29: noise or irrelevant
-PCA reveals data structure determined by covariance - Calculation for N measurements, M samples ($\mathrm{M}>\mathrm{N}$):

- Subtract means from measurements
- Data covariance matrix CV
- [Vector, EV] = eig(CV)
-Dimensionality reduction
- May facilitate separating categories (next lecture) - Can be implemented by neural learning networks
- Nonlinear manifolds in data require embellishments

