1. Consider the differential equation
\[\frac{dy}{dx} = y^2 - c \]
where \(c \) is a constant greater than zero.

(a.) Determine all equilibrium solutions and their stability.

Answer: Factoring the right-hand side of the differential equation, we can see that there will be equilibria solutions at \(y = \pm \sqrt{c} \). There are many ways one could determine their stability (e.g. use DFIELD, linearize about the fixed point and find the eigenvalues, etc.). One approach is to plot the phase-line portrait (Fig. 4). The right-hand side is just a concave-up parabola and the points where it crosses the horizontal-axis indicates the equilibrium locations. Whether the curve is above or below the axis indicates the directionality of the phase-line. We can see that \(y = \sqrt{c} \) is unstable and \(y = -\sqrt{c} \) is a stable equilibrium.

![Phase-line portrait for dy/dx = y^2 - c.](image)

(b.) Solve this equation analytically to obtain an expression for \(y(x) \). Your answer should depend upon \(c \) and contain an arbitrary constant.

Answer: Similar to question 3, we would use separation of variables, then integrate both sides. For this case, we could use a partial fraction expansion to simplify the denominator, yielding

\[
\int \frac{dy}{y^2 - c} = \int \left[\frac{-1}{2\sqrt{c}(y + \sqrt{c})} + \frac{1}{2\sqrt{c}(y - \sqrt{c})} \right] dy = x + C
\]
Figure 2: Comparison of exact solution for the differential equation \(y' = y^2 - c \) with solution estimated numerically using Euler’s method for different step-sizes. Also shown using a logarithmic \(x \)-axis (where the \(x \) values were slightly offset so to visualize the initial point).

The resulting integral is easily solved (make a substitution and use \(\int \frac{du}{u} = \ln |u| + c \)) and solving for \(y \), we have the final solution

\[
y(x) = \sqrt{c} \frac{1 + Ae^{2\sqrt{c}x}}{1 - Ae^{2\sqrt{c}x}}
\]

where \(A \) is an arbitrary constant.

(c.) Write a code to solve the equation numerically using Euler’s method on the interval \(x \in [0, 5] \) for the initial condition \(y(0) = 0 \) and with \(c = 4 \). On a single figure, plot your estimated solution curve using the following step sizes for \(\Delta x \): 0.5, 0.2, 0.1, 0.05, and 0.01. Make clear which curve corresponds to each step-size. How does the solution depend upon \(\Delta x \)?

Answer: An example code is given below as well as the figure (Fig. 5) that was asked for. The solution approaches the equilibrium value faster for smaller values of \(\Delta x \).

% ### odeSOLVEptII.m ### 11.10.08
% Matlab code to use Euler’s method to solve the differential equation
% \(y' = y^2 - c \) (where \(c \) is a positive const.)
% clear
clear
clf

% ——————————-
% User Input Parameters
xMIN= 0; % starting x-value
xMAX= 5; % ending x-value
deltaX= 0.01; % step-size

% initial conditions
y0= 0;

% ———————————
x0= xMIN;
nsteps= (xMAX-xMIN)/deltaX;

% %
\(y_S(1) = y_0; \ x_S(1) = x_0; \)

\[
\text{for } \text{nn}=2:\text{nsteps+1} \\
\quad \begin{align*}
% \text{note the difference here from the code for Part I} \\
\text{y}_S(\text{nn}) &= \text{y}_S(\text{nn-1}) + \Delta X \cdot (\text{y}_S(\text{nn-1})^2 - c); \\
% \text{update x-array} \\
\text{x}_S(\text{nn}) &= \text{x}_S(\text{nn-1}) + \Delta X;
\end{align*}
\]

\text{end}

\text{end}

\% plot the numerical solution
\text{plot(xS,yS)}
\text{hold on;}
\text{xlabel('x')}
\text{ylabel('y')}
\text{title('Numerical Solution to ODE \(dy/dx = y^2 - c \) using Eulers Method')}

\% plot exact (i.e., analytically-derived) solution (only true if \(y(0)=0 \))
\text{yA} = \text{sqrt(c)} \cdot \left(1 - \text{exp}(2\cdot\text{sqrt(c)}\cdot xS)\right) / \left(1 + \text{exp}(2\cdot\text{sqrt(c)}\cdot xS)\right);
\% could also have used \(-\text{sqrt(c)}\cdot \text{tanh}(\text{sqrt(c)}\cdot xS)\) here too
\text{plot(xS,yA,'rx')} \\
\text{grid on} \\
\text{legend('Eulers method','Exact','Location','SouthEast')}

\(\textbf{(d.)} \) Using \(\Delta x = 0.01 \), find solution curves for different initial conditions \(y(0) = y_o \). How do the solutions depend upon \(y_o \)?

\textbf{Answer:} See Fig.6.

\(\textbf{(e.)} \) Explain your answer to the last part in terms of your analytic solution. Are the two results consistent?

\textbf{Answer:} The constant \(A \) will depend upon the initial condition such that

\[
A = \frac{y_o - \sqrt{c}}{y_o + \sqrt{c}}
\]

where \(y_o = y(0) \). Solutions will diverge towards \(+\infty \) (for increasing \(x \)) if \(y_o > \sqrt{c} \). Solutions will be sigmoidal when \(|y_o| < \sqrt{c} \). The shape will be a reverse-\(S \) since solutions will move away from the unstable equilibrium (i.e., \(\sqrt{c} \)) and towards the stable one (\(-\sqrt{c} \)) as \(x \) increases. Decreasing \(y_o \) from around 2 towards -2 will move the center of the \(S \)-shape to the left. For \(y_o < \sqrt{c} \), solution curves will asymptotically approach the stable equilibrium. When \(|y_o| = \sqrt{c} \), the solutions will be constant (i.e., equilibrium solutions). Both the numerical (\(\Delta x = 0.01 \)) and analytical solutions are consistent with one another, though the numerical solution will underestimate for the case \(y_o > \sqrt{c} \) as the solution diverges.

Note that for the initial condition \(y(0) = 0 \), we have the solution

\[
y(x) = \sqrt{c} \cdot \frac{1 - e^{2\sqrt{c}x}}{1 + e^{2\sqrt{c}x}} = -\sqrt{c} \cdot \text{tanh}(\sqrt{c}x)
\]

\(\textbf{(f.)} \) What is the effect of varying \(c \)? Explain in the contexts of both your analytical answer and numerical simulations. Do both agree?
Figure 3: Comparison of numerical solutions for the differential equation $y' = y^2 - 4$ with solution estimated numerically using Euler's method with a step-size of $\Delta x = 0.01$ for different initial y values at $x = 0$. Though not shown on this figure, initial conditions where $y_0 > 2$ will diverge towards $+\infty$ (as $x \to \infty$) and $y_0 < 2$ will converge towards $y = 2$.
Answer: The effect of changing c is two-fold. First, it changes the equilibrium values and thus what the asymptotic limits are. Second, because \sqrt{c} appears in the argument of the exponent, increasing c will increase the rate at which solution asymptotically approach (or move away from) the equilibria. For example, if $|y_0| < \sqrt{c}$, then a larger value of c means a sharper transition in the S-shape that the solution takes. One could also introduce the variables $u = y/\sqrt{c}$ and $\tau = \sqrt{c}x$. This change of variables would reformulate the differential equation as

$$\frac{du}{d\tau} = u^2 - 1$$

and thereby removing the parameter-dependence in terms of understanding the underlying dynamics.
% [REF: pg.157 of Edelstein-Keshet]
% Purpose: Solve/plot the Gompertz equation for tumor growth in three
different ways:
% form A: system of two coupled (nonlinear, autonomous) ODEs
% \[
% \begin{align*}
% \text{out1}(1) &= y(2) \cdot y(1); \\
% \text{out1}(2) &= -P.\alpha y(2);
% \end{align*}
% \]
% form B: reduced version down to single (non-autonomous) ODE
% \[
% \text{out1}(1) = P.\gamma_0 y(1) \cdot \exp(-P.\alpha t);
% \]
% form C: further reduction to a single (autonomous) ODE
% \[
% \text{out1}(1) = -P.\alpha y(1) \cdot \log(y(1));
% \]
% - forms A & B (here on out called form A/B) are indeed equivalent; however
% from C is not
% - limiting equilibrium value (for form A/B) is a mix of P.y0(1), P.y0(2), &
% P.\alpha
% - depending upon params, form A/B can appear simply asymptotic or sigmoidal
% - to ensure the “form C” heads in the right direction, need to have P.y0(1)
% (i.e., initial val. of N) less than unity (i.e., expressed as a fractional
% amount)
% --> I am missing a piece of the puzzle there is an error in Edelstein-
% Keshet’s logic

% -------------------------------

P.\alpha = 2.15; \% alpha {1?}
P.y0(1) = 0.95; \% initial N {10?}
P.y0(2) = 0.25; \% initial gamma {0.1?}
% Integration limits
P.t0 = 0.0; \% Start value
P.tf = 10.0; \% Finish value
% -------------------------------

P.\gamma_0 = P.y0(2); \% separate out intial tumor growth rate
% +++
% --- form A ("full" form I)
[tF1 yF1] = ode45('GompertzFuncF1', [P.t0 P.tf], P.y0, [], P);
% --- form B (reduced form I)
[tR1 yR1] = ode45('GompertzFuncR1', [P.t0 P.tf], P.y0(1), [], P);
% --- form C (reduced form II)
[tR2 yR2] = ode45('GompertzFuncR2', [P.t0 P.tf], P.y0(1), [], P);
% +++
% yR1norm = yR1/yR1(end); \% "normalized" version of form B (re final val.)
% +++
% visualize
figure(1); clf;
h1= plot(tR1,yR1,’r--’,’LineWidth’,3); hold on; grid on;
h2= plot(tR2,yR2,’bo-’);
h3= plot(tF1,yF1(:,1),’k’,’LineWidth’,2);
%h4= plot(tR1,yR1norm,’r-.’,’LineWidth’,1);

xlabel(‘t’); ylabel(‘N’);
legend([h1 h2 h3],’Reduced form I’,’Reduced form II’,’Full’
form’,’Location’,’best’);
% Goal: Simulate changing (e.g., lowering) the "bit depth" for a signal
% o base signal here is a sinusoid w/ amplitude In.A
% o very kludge way to "digitize" --> develop more efficient means

clear
% ===
In.A= 1; % amplitude for sinusoid {5.5}
In.f= 1000; % sinusoid frequency [Hz] {1000}
In.N= 2; % # of bits for digitization (must be int. >= 1) {2?}
In.tL= [0 0.0012]; % time limits
In.SR= 44100;
% ==
% --- create base values
% = linspace(In.tL(1),In.tL(2),round((In.tL(2)-In.tL(1))*In.SR)); % time
% vals.
sig= In.A*sin(2*pi*In.f*t); % non-"digitized" signal
% --- create a "bit-limited" digitized vertical scale
% spacing= (2*In.A)/(2^In.N-1); % determines spacing between quantized vals.
% NOTE: should have that spacing= any val. of diff(digiS)
% --- (very) kludge way to force sig vals. to take on "bit-limited" vals.
for nn=1:numel(sig)
 indx= max(find(sig(nn)>=digiS));
 if ((sig(nn)-digiS(indx))<=(digiS(indx+1)-sig(nn))), sigQ(nn)= digiS(indx);
 elseif ((sig(nn)-digiS(indx))>(digiS(indx+1)-sig(nn))), sigQ(nn)= digiS(indx+1);
end
% ---
figure(1); clf;
h1= plot(t,sig); hold on; grid on;
h2= plot(t,sigQ,'r--','LineWidth',2);
xlabel('Time [s]'); ylabel('Signal [arb]');
legend([h1 h2],'base signal','bit-limited version')