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Motivation: Nonlinear oscillators

Gravity-driven pendulum

“first pendulum clock” re
Christiaan Huygens

mg sin @

wikipedia - Pendulum



Motivation: Nonlinear oscillators Gravity-driven pendulum

426 . g . Eqn. of motion
ﬁ =0 = _Z sin (9) (no damping)

mg sin@
; mg cos @
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Consider that there are two equilibria w/ differing stability....

wikipedia - Pendulum (mathematics)



Motivation: Nonlinear oscillators van der Pol oscillator

> Nonlinear version of a harmonic oscillator
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> Originally proposed to study cardiac dynamics and vacuum tubes

> Nonlinear and exhibits relatively complex behavior, thus has proven a popular
model for study in mathematics, physics, and biology

> Physically, how does this differ from a linear damped harmonic oscillator?

Small displacements - Negative damping

_ _ Limit cycles
(i.e., non-conservative system)
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VDPfunction(t,y,flag,P)

. position x
. velocity dx/dt

y(2);

VDPode45EX.m

(P.mu/P.m)*(l-y(l)"2)*y(2) - (P.k/P.m)*y(l) + (P.A/P.m)*sin(P.wr*t);

outl= outl';

wants output as a column vector
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X(t) [m]

VDPode45EX.m

1 | Limit cycles

— Even though there is damping, the system
oscillates by itself in a stable fashion
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- Aside from our ode45 code, can also use pplane to explore van der Pol system



Aside: Boundary value problems (BVPs)

> We have chiefly been considering ‘initial value problems’ (IVPs) up to this point,
where a set of initial conditions are known

P.y0(1l) =
P.y0(2)

= O
. .

% initial position [m]
% initial velocity [m/s]

o O
Ne  ~o

> BVPs are problems instead where values (or ‘boundaries’) are known for two
different time points

P.y0O(1l) = 0.0; % initial position [m]
P.yE(1) = 1.0; $ final position [m]
ex. General linear BVP
d*y dy ya) =«
—5 =p(t)—= +q(t)y + r(t)
dt> P a T y(b) =B

> Also connected mathematically to Sturm—Liouville theory

— BVPs either require some degree of guessing (of initial conditions) or modified
computational strategies to determine unique solutions (e.g., bvp4c)

Kutz (2013)



Aside: Boundary value problems (BVPs)

Shooting method y” =f(tyy’)

y®)>B
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ODE to solve Boundary
conditions y(b)<P

y” =f(ty.y)

ya) =«

‘Guess’ as to o ¢

dy(a) = A initial conditions ﬁy(a)

dt ~ ?
a b

1 Solve the differential equation using a time-stepping scheme with the initial conditions

y(a) = a and y'(a) = A.

o

Evaluate the solution y(b) at t = b and compare this value with the target value of y(b) = B.

3 Adjust the value of A (either bigger or smaller) until a desired level of tolerance and accuracy
is achieved. A bisection method for determining values of A, for instance, may be appropriate.

4 Once the specified accuracy has been achieved, the numerical solution is complete and is
accurate to the level of the tolerance chosen and the discretization scheme used in the time-

stepping.

— 2030 will stay focused on IVPs (at least for now)

Kutz (2013)



Linear systems analysis

> Very powerful means to study a wide class of linear systems

= Acoustics

= Electric circuits

= Signal processing

= MRI (Magnetic Resonance Imaging)

= Neuroscience

" |mage processing and computer vision - We will tackle numerous
topics in linear systems theory
= etc..... (the list goes on and on) throughout 2030 (e.g., Fourier

transforms) and beyond

> Powerful means to study a wide class of nonlinear systems

- ‘Linearizing’ nonlinear systems can provide crucial insights
(we’ll come back to the van der Pol oscillator shortly)



Starting Point: System of linear equations

3 (linear) equations, X1+x+x3=1
3 unknowns 7y - Dy sy =

X1 + 2% + 93
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In matrix algebra form, we can rewrite this as Ax = b with
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Starting Point: System of linear equations

> Can set up a computational routine to compute

1  Movement down the N pivots.
2 For each pivot, perform N additions/subtractions across the columns.

3 For each pivot, perform the addition/subtraction down the N rows.

— Useful URL: http://web.mit.edu/18.06/www/Course-Info/Tcodes.html

> LU (‘lower upper’) decomposition is more efficient

ail a4z a3 1 0 O Uil Ul U3
A=LU — a1 dyp a3 | = | Myl 1 0 0 Uzp U3

a1 asy as; ms31  msy 1 0 0 w33
Ax=b — LUx=Db Ly:b and Ux:y

- A bit of work to determine L and U, but easy to solve Ax=b after that



Do you speak Matlab?

http://blogs.mathworks.com/cleve/2013/08/19/backslash/



Matlab: Built-in optimizations to solve linear equations

> The Matlab command A\b actually does the following:

Do

6

It first checks to see if A is triangular, or some permutation thereof. If it is, then all that is
needed is a simple O(N 2) substitution routine.

It then checks if A is symmetric, i.e. Hermitian or self-adjoint. If so, a Cholesky factorization
is attempted. If A is positive definite, the Cholesky algorithm is always succesful and takes half
the run time of LU factorization.

It then checks if A is Hessenberg. If so, it can be written as an upper triangular matrix and
solved by a substitution routine.

If all the above methods fail, then LU factorization is used and the forward- and backward-
substitution routines generate a solution.

If A is not square, a QR (Householder) routine is used to solve the system.

If A is not square and sparse, a least-squares solution using QR factorization is performed.

- Matlab is fast/efficient at solving linear equations in matrix form

Kutz (2013)



Starting Point: System of linear autonomous ODEs

> Let’s consider a simple 2" order system (all these
ideas scale up for higher dimension systems)

> Re-express in matrix/vector form:

d [x
dt \y

o
oy
=

> Let’s make an assumption: solutions will have the
form of (possibly complex) exponentials

dx
dt

dt

dX_
dt

ax + by

= cx + dy

Ax

e.g., remember what we did for the
damped undriven harmonic oscillator!

.CC(t) :Ae—fyt/Q ei(wt+a)

eigenvalues and eigenvectors of the system

]{1 ]C3 This expression explicitly deals with the
T = [ creMt 4 coe?t

ko k4

wikipedia (phase space)



Novel concept: Eigenvalues & Eigenvectors

Eigenvalue —
A scalar associated with a given linear transformation of a vector space and having the property
that there is some nonzero vector which when multiplied by the scalar is equal to the vector
obtained by letting the transformation operate on the vector; especially : a root of the
characteristic equation of a matrix

[from Merriam-Webster]

> Etymology: eigen is German for ‘own’, ‘peculiar’

> Rich history in mathematics (Cauchy, Euler, Fourier, Hilbert, ....)

> Used in a wide variety of physics & engineering applications such as:

= Classical mechanics (e.g., ‘principle axes’ in rigid body rotations)

= Quantum mechanics (e.g., for solutions to Schrodinger’s equation, the eigenvalue of
the wavefunction is the associated energy E)

= Principal Component Analysis (PCA; we’ll come back to this later in the semester)
= Image processing and ‘Eigenfaces’ (we’ll come back to this at the end of the lecture)

= Harmonic oscillator (we’ll come back to this shortly)



Eigen Decomposition

WG)=(0 )0 T

Characteristic - determinant (det) is

equation: det(A o )‘I) =0 scalar value associated
with a square matrix

ODE as combination of eigenvalues AX _ )\X ‘secular equation’

and eigenvectors

k k
General solution: Tr = 1 cle>‘1t + 3 02€>\2t
k2 ]C4

- Remember, we implicitly assume the solution has this exponential form!



Finding eigenvalues

Characteristic det(A o )\I) — 0

equation:

Quadratic equation w/

two roots (for a 2"d )\2 — )\(a, + d) + (ad — bc) — (0

order system)

Note that complex roots (a — d) + \/(CL -+ d)2 — 4(ad — bC)

are possible —

- 9

ks Aot

cleAlt + Co€

- Eigenvalues explicitly tell you how the solutions behave!






