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“first	pendulum	clock”	re	
Christiaan	Huygens

wikipedia - Pendulum

Motivation: Nonlinear oscillators Gravity-driven	pendulum



wikipedia - Pendulum	(mathematics)

Motivation: Nonlinear oscillators Gravity-driven	pendulum

Phase	space	

Eqn.	of	motion
(no	damping)
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dt2
= ✓̈ = �g

`
sin (✓)

Consider	that	there	are	two	equilibria	w/	differing	stability….



Ø Nonlinear	version	of	a	harmonic	oscillator

Ø Originally	proposed	to	study	cardiac	dynamics	and	vacuum	tubes	

Ø Nonlinear	and	exhibits	relatively	complex	behavior,	thus	has	proven	a	popular	
model	for	study	in	mathematics,	physics,	and	biology

Ø Physically,	how	does	this	differ	from	a	linear	damped	harmonic	oscillator?

Small	displacements	à Negative	damping
(i.e.,	non-conservative	system)

Limit	cycles

Motivation: Nonlinear oscillators van	der	Pol	oscillator



VDPode45EX.m
function [out1] = VDPfunction(t,y,flag,P)
% --------------------------------------------------
%   y(1) ... position x
%   y(2) ... velocity dx/dt
out1(1)= y(2); 
out1(2)= (P.mu/P.m)*(1-y(1)^2)*y(2) - (P.k/P.m)*y(1) + (P.A/P.m)*sin(P.wr*t); 
out1= out1';    % wants output as a column vector
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Limit	cycles

initial	non-zero	
displacement
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Phase	space

à Even	though	there	is	damping,	the	system	
oscillates	by	itself	in	a	stable	fashion

Limit	cycles



à Aside	from	our	ode45	code,	can	also	use	pplane to	explore	van	der	Pol	system



Aside: Boundary value problems (BVPs)

Ø We	have	chiefly	been	considering	‘initial	value	problems’	(IVPs)	up	to	this	point,	
where	a	set	of	initial	conditions	are	known	

P.y0(1) = 0.0;   % initial position [m]
P.y0(2) = 1.0;   % initial velocity [m/s]

Ø BVPs	are	problems	instead	where	values	(or	‘boundaries’)	are	known	for	two	
different	time	points	

P.y0(1) = 0.0;   % initial position [m]
P.yE(1) = 1.0;   % final position [m]

Kutz (2013)

ex.	General	linear	BVP

à BVPs	either	require	some	degree	of	guessing	(of	initial	conditions)	or	modified	
computational	strategies	to	determine	unique	solutions	(e.g.,	bvp4c)

Ø Also	connected	mathematically	to	Sturm–Liouville theory



Aside: Boundary value problems (BVPs)

à 2030	will	stay	focused	on	IVPs	(at	least	for	now)	

Shooting	method	

ODE	to	solve	 Boundary	
conditions	

‘Guess’	as	to	
initial	conditions

Kutz (2013)



Linear systems analysis

Ø Very	powerful	means	to	study	a	wide	class	of	linear	systems

Ø Powerful	means	to	study	a	wide	class	of	nonlinear	systems

à ‘Linearizing’	nonlinear	systems	can	provide	crucial	insights	
(we’ll	come	back	to	the	van	der	Pol	oscillator	shortly)

§ Acoustics

§ Electric	circuits

§ Signal	processing

§ MRI	(Magnetic	Resonance	Imaging)

§ Neuroscience

§ Image	processing	and	computer	vision

§ etc.....	(the	list	goes	on	and	on)

àWe	will	tackle	numerous	
topics	in	linear	systems	theory	
throughout	2030	(e.g.,	Fourier	
transforms)	and	beyond



Starting Point: System of linear equations

Kutz (2013)

3	(linear)	equations,	
3	unknowns

rewrite	in	
matrix	form

Gaussian
elimination
(row	reduction)



Starting Point: System of linear equations

Ø Can	set	up	a	computational	routine	to	compute

Ø LU	(‘lower	upper’)	decomposition	is	more	efficient

à A	bit	of	work	to	determine	L and	U,	but	easy	to	solve	Ax=b after	that

à Useful	URL:	http://web.mit.edu/18.06/www/Course-Info/Tcodes.html



http://blogs.mathworks.com/cleve/2013/08/19/backslash/

Do you speak Matlab?



Matlab: Built-in optimizations to solve linear equations

Ø The	Matlab command	A\b	actually	does	the	following:

Kutz (2013)

àMatlab is	fast/efficient	at	solving	linear	equations	in	matrix	form



Starting Point: System of linear autonomous ODEs
dx

dt

= ax+ by

dy

dt

= cx+ dy

Ø Let’s	consider	a	simple	2nd order	system	(all	these	
ideas	scale	up	for	higher	dimension	systems)

Ø Re-express	in	matrix/vector	form:

d

dt

✓
x

y

◆
=

✓
a b

c d

◆✓
x

y

◆ dx

dt
= Ax

Ø Let’s	make	an	assumption:	solutions	will	have	the	
form	of	(possibly	complex)	exponentials

x =


k1

k2

�
c1e

�1t +


k3

k4

�
c2e

�2t This	expression	explicitly	deals	with	the	
eigenvalues and	eigenvectors of	the	system

e.g.,	remember	what	we	did	for	the	
damped	undriven harmonic	oscillator!

wikipedia (phase	space)



Novel concept: Eigenvalues & Eigenvectors

Ø Used	in	a	wide	variety	of	physics	&	engineering	applications	such	as:

§ Classical	mechanics	(e.g.,	‘principle	axes’	in	rigid	body	rotations)

§ Quantum	mechanics	(e.g.,	for	solutions	to	Schrodinger’s	equation,	the	eigenvalue	of	
the	wavefunction is	the	associated	energy	E)	

§ Principal	Component	Analysis (PCA;	we’ll	come	back	to	this	later	in	the	semester)

§ Image	processing	and	‘Eigenfaces’	(we’ll	come	back	to	this	at	the	end	of	the	lecture)

§ Harmonic	oscillator	(we’ll	come	back	to	this	shortly)

Eigenvalue –
A scalar	associated	with	a	given	linear	transformation	of	a	vector	space	and	having	the	property	
that	there	is	some	nonzero	vector	which	when	multiplied	by	the	scalar	is	equal	to	the	vector	
obtained	by	letting	the	transformation	operate	on	the	vector;	especially : a	root	of	the	
characteristic	equation	of	a	matrix	

[from	Merriam-Webster]		
Ø Etymology: eigen is	German	for	‘own’,	‘peculiar’

Ø Rich	history	in	mathematics	(Cauchy,	Euler,	Fourier,	Hilbert,	....)	



Eigen Decomposition

d
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◆ dx

dt
= Ax

det(A� �I) = 0Characteristic	
equation:

Ax = �xODE	as	combination	of	eigenvalues	
and	eigenvectors

x =


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�
c1e
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
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�
c2e

�2tGeneral	solution:

à Remember,	we	implicitly	assume	the	solution	has	this	exponential	form!

à determinant	(det)	is	
scalar	value	associated	
with	a	square	matrix

‘secular	equation’



Finding eigenvalues

det(A� �I) = 0Characteristic	
equation:

�2 � �(a+ d) + (ad� bc) = 0
Quadratic	equation	w/	
two	roots	(for	a	2nd
order	system)

� =
(a+ d)±

p
(a+ d)2 � 4(ad� bc)

2

Note	that	complex	roots	
are	possible
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�
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à Eigenvalues	explicitly	tell	you	how	the	solutions	behave!




