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N o see previous notes
Motivation: Fitting a curve to data g
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Regression: Fitting a curve to data

> Present focus is how to fit a
function (or some curve) to the
data

> Two basic ingredients:

= data points
= ‘model’ (i.e., the function to fit)

> Here we had some function as
determined from theory
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0(w) = arctan

Basic idea: If we knew the optimal values of y and ®_, then we would

know the best fitting function o(m)

(which may be useful in numerous ways)



Regression

> Etymological roots stem from Francis
Galton and the biological notion to

regress down towards an average value
(‘regression towards the mean’)

. . -ZIG -10 1I0 210 310 40 510 SIO
(Very) common application:
Fitting a straight line to data (linear regression)

> Very general/powerful concept, manifests in many scientific and engineering
applications

> We will initially focus on a parametric method known at least-squares analysis

Important point #1: Regression analysis typically involves ‘modeling’ in that one
commonly has assumed a model they are trying to fit to the data

Important point #2: Essentially an optimization problem

wikipedia (regression analysis)



Aside: Anscombe's quartet
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Important point #3: Be smart about how you handle data and make analysis decisions!

wikipedia (Anscomb’s quartet)



Aside: Extracting data from figures
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Ignore the curve for the moment.

> How might we extract the ‘data’
from the graph itself?
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analysis (e.g., determine the curve of
best fit) Frequency (kHz)

> Many strategies possible, we will focus on use of one function called deplot.m
(hacked together by Christopher Shera; http://web.mit.edu/apg/)

Basic idea: Graphical-user interface (GUI) that allows user to semi-manually extract
points from the graph and store away)




Aside: Extracting data from figures
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Aside: Extracting data from figures
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> Use deplot.m to extract data and
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save to file !
-180 —
clear
A= load( 'extractedData.txt');
A= A(:,1:2); % ignore last column
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semilogx(A(:,1),A(:,2), 'ko', 'Linewidth',62);

axis([1 50 -185 185]);

xlabel( 'Frequency [kHz]'); ylabel('Phase
[degrees]');

hold on; grid on;

= Might not be exact, but now we have a
means to deal with the numbers directly
(e.g., nonlinear regression fit of arctan)
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Linear regression

> Useful starting point:

= intuitive
= has an exact solution
= easy to implement numerically

- Natural foundation for more advanced
topics (e.g., nonlinear regression, non-
parametric regression, bootstrapping)

10 20 30 40 50 60

> In this case, we have some (2-D) ‘data’ and our ‘model’ is simply a linear function

= the data form x; (independent var.) and y, (dependent var.)

y=a+ bx = the model is described by y(x)
=  goalis to determine the best values of @ and b

We’ll return to

> A key quantity in ‘least squares’ analysis is ¥2 (“chi-squared”
yaq y q y yall q ) this shortly



Linear regression: Basic ideas

Example 6.1. A student is studying electrical currents and potential differences. He
has been provided with a 1-m nickel-silver wire mounted on a board, a lead-acid bat-
tery, and an analog voltmeter. He connects cells of the battery across the wire and mea-
sures the potential difference or voltage between the negative end and various
positions along the wire. From examination of the meter, he estimates the uncertainty
in each potential measurement to be 0.05 V. The uncertainty in the position of the
probe is less than 1 mm and is considered to be negligible.

- What assumptions are made here?

Bevington (2003)



Linear regression: Basic ideas

Potential difference V as a function of position along a current-carrying

nickel-silver wire

Fitted
Potential potential
Point Postition difference difference
number x; (cm) Vi (V) x? x;V; a + bx
1 10.0 0.37 100 3.70 0.33
2 20.0 0.58 400 11.60 0.60
3 30.0 0.83 900 24.90 0.86
4 40.0 1.15 1,600 46.00 1.12
5 50.0 1.36 2,500 68.00 1.38
6 60.0 1.62 3,600 97.20 1.64
7 70.0 1.90 4,900 133.00 1.91
8 80.0 2.18 6,400 174.40 2.17
9 90.0 2.45 8,100 220.50 2.43
Sums 450.0 12.44 28,500 779.30

Bevington (2003)



Linear regression: Basic ideas

Potential difference (V)
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Basic statistical considerations (we’ll need these later)

Note: There is a deeper mathematical/statistical theory here (e.g., probability
distributions, Method of Maximum Likelihood) we are only scratching the surface of

> Assume we have some set of data points X: r; € X

N i=1,2,--- N
» Sigma notation: EXIE zx,-

i=1

Median and Mode also commonly used

1 100.0
> Thenthe meanof Xis: = — . L
x== > x; _ |
80.0 —
> In the limit of large numbers, the “g wol- §l 8
notion of a parent distribution s | -
g wor 2 .
emerges:
1 20.0 (- _
= lim| — O x; -
L‘J N— N 2 y 0.0 1 | I 1 1 1 | !
0.0 0.2 04 0.6 0.8 1.0

Bevington (2003)



Basic statistical considerations (we’ll need these later)

> Note that in the real world, we can only have a finite 1
number of points, so the notion of a parent distribution is W= Illl_l’lc“’lo IT/ 2 X;
an ideal one (we deal with the ‘sample distribution’)

) . Basic rules of thumb — Try to make sure:
(parent parameter) = ILl_r.n (experimental parameter) = Samples are random
* = Nislarge

» Standard deviation — Tells us how much a given point ‘deviates’ from the average
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Basic statistical considerations (we’ll need these later)

r; € X
i=1,2,---. N

> Assume we have some set of data points X:

> Each data point (i.e., x;) can have its own standard deviation (c;)

Note: o is something that you typically measure (i.e., directly tied to the empirical nature of x,)

Example 6.2. In another experiment, a student is provided with a radioactive source
enclosed in a small 8-mm-diameter plastic disk and a Geiger counter with a 1-cm-
diameter end window. Her object is to investigate the 1/r2? law by recording Geiger
counter measurements over a fixed period of time at various distances from the source
between 20 and 100 cm. Because the counting rate is not expected to vary from mea-
surement to measurement, except for statistical fluctuations, the student can record
data long enough to obtain good statistics over the entire range of the experiment. She
uses an automatic recording system and records counts for thirty 15-s intervals at each
position. For analysis in this experiment, she sums the counts from each set of 30 mea-
surements to obtain the number of counts in 7.5 m intervals. The separate 15-s inter-

val measurements at each position can be used in other statistical studies.
Bevington (2003)



Linear regression: Basic ideas

Number of counts detected in 7%2-min intervals as a function of distance from

the source
Weight Fitted
Distance x;=1/d? Counts 1/cCc? counts
i di (m) (m-z) C,- O¢; W; W; X; W; C,' W,-x% W,'x,'C,' a+ bx;
] 0.20 25.00 901 30.0 |0.00111 0.0278 1 0694 250 887
2 0.25 16.00 652 25.5 10.00153 0.0254 1 0393 16.0 610
3 0.30 11.11 443 21.0 10.00226 0.0251 1 0279 11.1 461
4 0.35 8.16 339 18.4 |0.00295 0.0241 1 0.197 82 370
5 0.40 6.25 283 16.8 |0.00353 0.0221 1 0.138 6.3 311
6 0.45 4.94 281 16.8 10.00356 0.0176 1 0.087 49 271
7 0.50 4.00 240 15.5 [0.00417 0.0167 1 0.067 4.0 242
8 0.60 2.78 220 14.8 |0.00455 0.0126 1 0.035 2.8 205
9 0.75 1.78 180 13.4 |0.00556 0.0099 1 0.018 1.8 174
10 1.00 1.00 154 12.4 10.00649 0.0065 1 0.007 1.0 150
Sums 0.03570 0.1868 10 1912 81.0

Bevington (2003)



Linear regression: Basic ideas
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- Any method we develop to determine the best fit should take into account that

certain points might be ‘weighted’ differently
Bevington (2003)



Least squares

> We measure y. and want to determine a function y(x) such that we have a predicted
value y(x;)

> Deviations between observed value [y;] and predicted value [y(x;)] is Ay;. For a linear
function to fit, this is then

- Goal is to determine the best values

Ay, =y;— y(x;) = yi—a~— bx of a and b so to minimize Ay;

> Assume underlying probability distribution is Gaussian:

Gaussian parent

. 1 1y, — YO(xi) 2 distributions are very
P;= €Xp *5 o common/important in
o;V2m i physics!

That is

We shall assume that each individual measured value of y; is itself drawn from a
Gaussian distribution with mean yy(x;) and standard deviation o;.

Bevington (2003)



Potential difference (V)
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Least squares Various error measurements can be minimized when approximating with a given function

f(x). Three standard possibilities are given as follows

I. MaximumError :

Eoo(f) = max | f(x) — vl (3.1.4a)
1<k<n
II. AverageError :
n
Basic idea: Squaring eliminates E 1
See s 1) == D 1f (1) — yil- (3.1.4b)
bias due cancellations / n ; / 4
III. Root-meanSquare :
4 T T T T T E 1 n 1/2
R Ex(f) = ( > 1f ) —mz) . (3.1.40)
k=1

- Numerous strategies could be
employed, but a root-mean square is
the most popular/common

- Minimizing such leads to the name
‘least squares’

Kutz (2013)



Least squares

Weighted sum of the

> We call our ‘goodness-of-fit’ parameter %2 (“chi-squared”) squares of the
deviations
2 2
_ Yi — y(x‘) _ 1 for a linear fit
X* = E[ o '} —Z[;(yi—a—bx,-)
{ {

> To determine the smallest value of 2, the following factors should be kept in mind:

1. Fluctuations in the measured values of the variables y;, which are random sam-
ples from a parent population with expectation values y,(x;).

2. The values assigned to the uncertainties o; in the measured variables y;. Incor-
rect assignment of the uncertainties o; will lead to incorrect values of x2.

3. The selection of the analytical function y(x) as an approximation to the “true”
function yy(x). It might be necessary to fit several different functions in order to
find the appropriate function for a particular set of data.

4. The values of the parameters of the function y(x). Our objective is to find the
“best values” of these parameters.

Bevington (2003)



Linear least squares

> To minimize y?, we differentiate and find the associated zeros (such will always be a
minimum here)

Note: Mathematically, this is equivalent to finding the equilibria for a set of PDEs

i Rearrange as:
= xt=— -%<y,~—a—bx>2}
da da <| o; Vi 1 X;
' 2 5=ax 5tbhY
=-2> ;(yi—a—bxi) =0 ’ : !

2
X;V; X X;
3 p x E:—’lzaz—l'i‘bg t
5= 55| B a- ) L

Xi
= _22 'o_‘ig(}’i —a— bxi)} =0

Sl |

—> This is just a linear system of equations
(i.e., two equations, two unknowns)!
Here we are solving for a and b

Bevington (2003)



Least squares

> Determinant solution:

i Xi
1 20% 20'22 1 X < i i o Xidi
I B O R k)
> o2 2_?
So =4
1 01'2 Ul'z 1 1 XiYi Xi Yi
-3 T o[iEazY-zizy
2 22
A= 0:‘2 0-% — Lzﬁ_ Eﬁt_ 2 —> Direct recipe to
X; X,Z 2 012 0-12 0-1_2 solve for a and b
25 2

Bevington (2003)



Least squares

> These expression simplify further when all uncertainties are equal (c=0,):

_ 1 2y, 22X >

a= A |Sxy, Sa? A’ (Ex 2y — Exizxiyi)
_1\N 2)’:' 1

A= Exi Ex% —NEx,- (Ex,-)

> Kutz's book pitches it slightly differently:

Upon rearranging, the 2 x 2 system of linear equations is found for A and B:

(Zlei Zlek) (A) _ (Zlek)’k) |
Zzzlxk n B ZZ:l)’k

This equation can be easily solved using the backslash command in MATLAB.

Bevington (2003)
Kutz (2013)



Do you speak Matlab?

http://blogs.mathworks.com/cleve/2013/08/19/backslash/



Computational methods to minimize y?2

> Matlab has numerous built-in functions. For a linear fit (and other polynomials), one
can use pOlyfit .IN (see example code EXregressionl.m for syntax)

> For the linear case, the preceding formulae for the exact solution provide an explicit

recipe (see example code EXregression1.m for syntax)

> Brute force estimate y? for a range of
parameter values and see which ones
provide the smallest value. Refine your

search and repeat. (this is called the grid-
search method)

FIGURE 8.2
Chi-square hypersurface as a function of two parameters.

Bevington (2003)






