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Motivation:	Fitting	a	curve	to	data

http://dspace.mit.edu/handle/1721.1/87312#files-area

Þ Characterizing phase slope near
resonance provides measure of damping

Micro-mechanical resonator

see	previous	notes



Regression:	Fitting	a	curve	to	data

Ø Two	basic	ingredients:	

Ø Present	focus	is	how	to	fit	a	
function	(or	some	curve)	to	the	
data

§ data	points
§ ‘model’	(i.e.,	the	function	to	fit)

Ø Here	we	had	some	function	as	
determined	from	theory

Basic	idea:	If	we	knew	the	optimal	values	of	g and	wo,	then	we	would	
know	the	best	fitting function	d(w)	 (which	may	be	useful	in	numerous	ways)



Regression

Ø Etymological	roots	stem	from	Francis	
Galton	and	the	biological	notion	to	
regress	down	towards	an	average	value	
(‘regression	towards	the	mean’)

wikipedia (regression	analysis)

(Very) common application:
Fitting a straight line to data (linear regression) 

Ø Very	general/powerful	concept,	manifests	in	many	scientific	and	engineering	
applications

Ø We	will	initially	focus	on	a parametricmethod	known	at	least-squares	analysis

Important point #1: Regression analysis typically involves ‘modeling’ in that one 
commonly has assumed a model they are trying to fit to the data

Important point #2: Essentially an optimization problem



Aside:	Anscombe's quartet

wikipedia (Anscomb’s quartet)

Important point #3: Be smart about how you handle data and make analysis decisions!



Aside:	Extracting	data	from	figures

Ignore	the	curve	for	the	moment.

Ø How	might	we	extract	the	‘data’	
from	the	graph	itself?	

Þ Such would allow us to do some 
analysis (e.g., determine the curve of 
best fit)

Ø Many	strategies	possible,	we	will	focus	on	use	of	one	function	called	deplot.m
(hacked	together	by	Christopher	Shera;	http://web.mit.edu/apg/)

Basic	idea:	Graphical-user	interface	(GUI)	that	allows	user	to	semi-manually	extract	
points	from	the	graph	and	store	away)



Aside:	Extracting	data	from	figures deplot.m



Aside:	Extracting	data	from	figures

clear
A= load('extractedData.txt');
A= A(:,1:2);    % ignore last column
semilogx(A(:,1),A(:,2),'ko','LineWidth',2);
axis([1 50 -185 185]);
xlabel('Frequency [kHz]'); ylabel('Phase 
[degrees]');
hold on; grid on;

Ø Use	deplot.m to	extract	data	and	
save	to	file
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Þ Might not be exact, but now we have a 
means to deal with the numbers directly 
(e.g., nonlinear regression fit of arctan)



Linear	regression

Ø Useful	starting	point:

§ intuitive
§ has	an	exact	solution
§ easy	to	implement	numerically

à Natural foundation for more advanced 
topics (e.g., nonlinear regression, non-
parametric regression, bootstrapping)

Ø In	this	case,	we	have	some	(2-D)	‘data’	and	our	‘model’	is	simply	a	linear	function

§ the	data	form	xi (independent	var.)	and	yi (dependent	var.)
§ the	model	is	described	by	y(x)
§ goal	is	to	determine	the	best	values	of	a and	b

y = a+ bx

Ø A	key	quantity	in	‘least	squares’	analysis	is	c2 (“chi-squared”) We’ll	return	to	
this	shortly



Linear	regression:	Basic	ideas

Bevington (2003)

à What assumptions are made here?



Linear	regression:	Basic	ideas

Bevington (2003)



Linear	regression:	Basic	ideas

Bevington (2003)

à Our goal is determine the straight line that 
best fits the data



Basic	statistical	considerations (we’ll	need	these	later)

Bevington (2003)

Note:	There	is	a	deeper	mathematical/statistical	theory	here	(e.g.,	probability	
distributions,	Method	of	Maximum	Likelihood)	we	are	only	scratching	the	surface	of

Ø Assume	we	have	some	set	of	data	points	X:
xi 2 X

i = 1, 2, · · · , N
Ø Sigma	notation:

Ø Then	the	mean of	X is:
Median and Mode also commonly used

Ø In	the	limit	of	large	numbers,	the	
notion	of	a parent	distribution	
emerges:	



Basic	statistical	considerations (we’ll	need	these	later)

Ø Note	that	in	the	real	world,	we	can	only	have	a	finite	
number	of	points,	so	the	notion	of	a	parent	distribution	is	
an	ideal	one	(we	deal	with	the	‘sample	distribution’)	

Ø Standard	deviation – Tells	us	how	much	a	given	point	‘deviates’	from	the	average

Basic rules of thumb – Try to make sure:
§ Samples are random
§ N is large

When N is finite:
� =

vuut 1

N

NX

i=1

(xi � x̄)2



Basic	statistical	considerations (we’ll	need	these	later)

Ø Assume	we	have	some	set	of	data	points	X: xi 2 X

i = 1, 2, · · · , N

Ø Each	data	point	(i.e.,	xi)	can	have	its	own	standard	deviation	(si)

Note:  si is something that you typically measure (i.e., directly tied to the empirical nature of xi)

Bevington (2003)



Linear	regression:	Basic	ideas

Bevington (2003)



Linear	regression:	Basic	ideas

Bevington (2003)

à Any method we develop to determine the best fit should take into account that 
certain points might be ‘weighted’ differently

à Note that not all points have the 
same uncertainty!



Least	squares

Bevington (2003)

Ø We	measure	yi and	want	to	determine	a	function	y(x)	such	that	we	have	a	predicted	
value	y(xi)

Ø Deviations	between	observed	value	[yi]	and	predicted	value	[y(xi)]	is	Dyi.	For	a	linear	
function	to	fit,	this	is	then

à Goal	is	to	determine	the	best	values	
of	a and	b so	to	minimize Dyi

Ø Assume	underlying	probability	distribution	is	Gaussian:

That	is

Gaussian	parent	
distributions	are	very	
common/important	in	
physics!



Bevington (2003)

à Notice that the data are not exactly linear 
themselves (i.e., there is no single straight 
line that goes through all points). This 
stems from some degree of uncertainty



Kutz (2013)

Least	squares

à Numerous strategies could be 
employed, but a root-mean square is 
the most popular/common 

à Minimizing such leads to the name 
‘least squares’

Basic	idea:	Squaring	eliminates	
bias	due	cancellations



Bevington (2003)

Least	squares

Ø We	call	our	‘goodness-of-fit’	parameter	c2 (“chi-squared”)
Weighted	sum	of	the	
squares	of	the	
deviations

Ø To	determine	the	smallest	value	of	c2,	the	following	factors	should	be	kept	in	mind:

for	a	linear	fit



Bevington (2003)

Linear	least	squares

Ø To	minimize	c2,	we	differentiate	and	find	the	associated	zeros	(such	will	always	be	a	
minimum	here)

Note:	Mathematically,	this	is	equivalent	to	finding	the	equilibria for	a	set	of	PDEs

Rearrange	as:

à This	is	just	a	linear	system	of	equations	
(i.e.,	two	equations,	two	unknowns)!
Here	we	are	solving	for	a and	b

xi

xi



Bevington (2003)

Least	squares

Ø Determinant	solution:

à Direct	recipe	to	
solve	for	a and	b



Bevington (2003)
Kutz (2013)

Least	squares

Ø These	expression	simplify	further	when	all	uncertainties	are	equal	(s=si):	

Ø Kutz’s book	pitches	it	slightly	differently:



http://blogs.mathworks.com/cleve/2013/08/19/backslash/

Do you speak Matlab?



Computational	methods	to	minimize	c2

Bevington (2003)

Ø Matlab has	numerous	built-in	functions.	For	a	linear	fit	(and	other	polynomials),	one	
can	use	polyfit.m (see	example	code	EXregression1.m	for	syntax)			

Ø For	the	linear	case,	the	preceding	formulae	for	the	exact	solution	provide	an	explicit	
recipe (see	example	code	EXregression1.m	for	syntax)	

Ø Brute	force	estimate	c2 for	a	range	of	
parameter	values	and	see	which	ones	
provide	the	smallest	value.	Refine	your	
search	and	repeat. (this	is	called	the	grid-
search	method)	




