Computational Methods (PHYS 2030)

Instructors: Prof. Christopher Bergevin (cberge@yorku.ca)

Schedule: Lecture: MWF 11:30-12:30 (CLH M)

Website: http://www.yorku.ca/cberge/2030W2018.html
<table>
<thead>
<tr>
<th>Ratio</th>
<th>Waveform</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>![Sound Vibration 1:1]</td>
</tr>
<tr>
<td>1:2</td>
<td>![Sound Vibration 1:2]</td>
</tr>
<tr>
<td>1:3</td>
<td>![Sound Vibration 1:3]</td>
</tr>
<tr>
<td>2:3</td>
<td>![Sound Vibration 2:3]</td>
</tr>
<tr>
<td>3:4</td>
<td>![Sound Vibration 3:4]</td>
</tr>
<tr>
<td>3:5</td>
<td>![Sound Vibration 3:5]</td>
</tr>
<tr>
<td>4:5</td>
<td>![Sound Vibration 4:5]</td>
</tr>
<tr>
<td>5:6</td>
<td>![Sound Vibration 5:6]</td>
</tr>
</tbody>
</table>
Regression

- Etymological roots stem from Francis Galton and the biological notion to regress down towards an average value (‘regression towards the mean’)

(Very) common application: Fitting a straight line to data (linear regression)

- Very general/powerful concept, manifests in many scientific and engineering applications

- We will initially focus on a parametric method known as least-squares analysis

Important point #1: Regression analysis typically involves ‘modeling’ in that one commonly has assumed a model they are trying to fit to the data

Important point #2: Essentially an optimization problem
Aside: Anscombe's quartet

Important point #3: Be smart about how you handle data and make analysis decisions!
Linear regression

- Useful starting point:
 - intuitive
 - has an exact solution
 - easy to implement numerically

- Natural foundation for more advanced topics (e.g., nonlinear regression, non-parametric regression, bootstrapping)

- In this case, we have some (2-D) ‘data’ and our ‘model’ is simply a linear function

\[y = a + bx \]

- the data form \(x_i \) (independent var.) and \(y_i \) (dependent var.)
- the model is described by \(y(x) \)
- goal is to determine the best values of \(a \) and \(b \)

- A key quantity in ‘least squares’ analysis is \(\chi^2 \) (‘chi-squared’)

We’ll return to this shortly
Basic statistical considerations (we’ll need these later)

Note: There is a deeper mathematical/statistical theory here (e.g., probability distributions, Method of Maximum Likelihood) we are only scratching the surface of

- Assume we have some set of data points X:

 $x_i \in X$

 \[i = 1, 2, \ldots, N \]

- Sigma notation:

 \[\sum_{i=1}^{N} x_i \equiv \sum_{i=1}^{N} x_i \]

- Then the mean of X is:

 \[\bar{x} \equiv \frac{1}{N} \sum_{i=1}^{N} x_i \]

- In the limit of large numbers, the notion of a parent distribution emerges:

 \[\mu \equiv \lim_{N \to \infty} \left(\frac{1}{N} \sum_{i=1}^{N} x_i \right) \]
Basic statistical considerations (we’ll need these later)

- Note that in the real world, we can only have a finite number of points, so the notion of a parent distribution is an ideal one (we deal with the ‘sample distribution’)

\[
\mu = \lim_{N \to \infty} \left(\frac{1}{N} \sum x_i \right)
\]

(parent parameter) = \lim_{N \to \infty} (experimental parameter)

- Standard deviation – Tells us how much a given point ‘deviates’ from the average

\[
\sigma^2 = \lim_{N \to \infty} \left[\frac{1}{N} \sum (x_i - \mu)^2 \right] = \lim_{N \to \infty} \left(\frac{1}{N} \sum x_i^2 \right) - \mu^2
\]

When \(N \) is finite:

\[
\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}
\]

Basic rules of thumb – Try to make sure:
- Samples are random
- \(N \) is large
Any method we develop to determine the best fit should take into account that certain points might be ‘weighted’ differently.
Least squares

- We measure \(y_i \) and want to determine a function \(y(x) \) such that we have a predicted value \(y(x_i) \)

- Deviations between observed value \([y_i]\) and predicted value \([y(x_i)]\) is \(\Delta y_i \). For a linear function to fit, this is then

\[
\Delta y_i = y_i - y(x_i) = y_i - a - bx_i
\]

\(\rightarrow \) Goal is to determine the best values of \(a \) and \(b \) so to minimize \(\Delta y_i \)

- Assume underlying probability distribution is Gaussian:

\[
P_i = \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left\{ -\frac{1}{2} \left[\frac{y_i - y_0(x_i)}{\sigma_i} \right]^2 \right\}
\]

Gaussian parent distributions are very common/important in physics!

That is

We shall assume that each individual measured value of \(y_i \) is itself drawn from a Gaussian distribution with mean \(y_0(x_i) \) and standard deviation \(\sigma_i \).
Least squares

Various error measurements can be minimized when approximating with a given function $f(x)$. Three standard possibilities are given as follows

I. MaximumError:

$$E_\infty(f) = \max_{1<k<n} |f(x_k) - y_k|.$$ \hfill (3.1.4a)

II. AverageError:

$$E_1(f) = \frac{1}{n} \sum_{k=1}^{n} |f(x_k) - y_k|.$$ \hfill (3.1.4b)

Basic idea: Squaring eliminates bias due cancellations

III. Root-meanSquare:

$$E_2(f) = \left(\frac{1}{n} \sum_{k=1}^{n} |f(x_k) - y_k|^2 \right)^{1/2}.$$ \hfill (3.1.4c)

→ Numerous strategies could be employed, but a root-mean square is the most popular/common

→ Minimizing such leads to the name ‘least squares’
Least squares

- We call our ‘goodness-of-fit’ parameter χ^2 (“chi-squared”)

$$\chi^2 = \sum \left[\frac{y_i - y(x_i)}{\sigma_i} \right]^2 = \sum \left[\frac{1}{\sigma_i} (y_i - a - bx_i) \right]^2$$

for a linear fit

- To determine the smallest value of χ^2, the following factors should be kept in mind:

1. Fluctuations in the measured values of the variables y_i, which are random samples from a parent population with expectation values $y_0(x_i)$.
2. The values assigned to the uncertainties σ_i in the measured variables y_i. Incorrect assignment of the uncertainties σ_i will lead to incorrect values of χ^2.
3. The selection of the analytical function $y(x)$ as an approximation to the “true” function $y_0(x)$. It might be necessary to fit several different functions in order to find the appropriate function for a particular set of data.
4. The values of the parameters of the function $y(x)$. Our objective is to find the “best values” of these parameters.
Linear least squares

To minimize χ^2, we differentiate and find the associated zeros (such will always be a minimum here)

Note: Mathematically, this is equivalent to finding the equilibria for a set of PDEs

\[
\frac{\partial}{\partial a} \chi^2 = \frac{\partial}{\partial a} \sum \left[\frac{1}{\sigma_i^2} (y_i - a - bx)^2 \right]
\]

\[
= -2 \sum \left[\frac{1}{\sigma_i^2} (y_i - a - bx_i) \right] = 0
\]

\[
\frac{\partial}{\partial b} \chi^2 = \frac{\partial}{\partial b} \sum \left[\frac{x_i}{\sigma_i^2} (y_i - a - bx)^2 \right]
\]

\[
= -2 \sum \left[\frac{x_i}{\sigma_i^2} (y_i - a - bx_i) \right] = 0
\]

Rearrange as:

\[
\sum \frac{y_i}{\sigma_i^2} = a \sum \frac{1}{\sigma_i^2} + b \sum \frac{x_i}{\sigma_i^2}
\]

\[
\sum \frac{x_i y_i}{\sigma_i^2} = a \sum \frac{x_i}{\sigma_i^2} + b \sum \frac{x_i^2}{\sigma_i^2}
\]

This is just a linear system of equations (i.e., two equations, two unknowns)!
Here we are solving for a and b
Least squares

- **Determinant solution:**

 \[a = \frac{1}{\Delta} \begin{vmatrix} \sum \frac{y_i}{\sigma_i^2} & \sum \frac{x_i}{\sigma_i^2} \\ \sum \frac{x_i y_i}{\sigma_i^2} & \sum \frac{x_i^2}{\sigma_i^2} \end{vmatrix} = \frac{1}{\Delta} \left(\sum \frac{x_i^2}{\sigma_i^2} \sum \frac{y_i}{\sigma_i^2} - \sum \frac{x_i}{\sigma_i^2} \sum \frac{x_i y_i}{\sigma_i^2} \right) \]

 \[b = \frac{1}{\Delta} \begin{vmatrix} \sum \frac{1}{\sigma_i^2} & \sum \frac{y_i}{\sigma_i^2} \\ \sum \frac{x_i}{\sigma_i^2} & \sum \frac{x_i y_i}{\sigma_i^2} \end{vmatrix} = \frac{1}{\Delta} \left(\sum \frac{1}{\sigma_i^2} \sum \frac{x_i y_i}{\sigma_i^2} - \sum \frac{x_i}{\sigma_i^2} \sum \frac{y_i}{\sigma_i^2} \right) \]

 \[\Delta = \begin{vmatrix} \sum \frac{1}{\sigma_i^2} & \sum \frac{x_i}{\sigma_i^2} \\ \sum \frac{x_i}{\sigma_i^2} & \sum \frac{x_i^2}{\sigma_i^2} \end{vmatrix} = \sum \frac{1}{\sigma_i^2} \sum \frac{x_i^2}{\sigma_i^2} - \left(\sum \frac{x_i}{\sigma_i^2} \right)^2 \]

- Direct recipe to solve for \(a \) and \(b \)
Least squares

- These expression simplify further when all uncertainties are equal ($\sigma=\sigma_i$):

\[
a = \frac{1}{\Delta'} \left| \begin{array}{cc} \Sigma y_i & \Sigma x_i \\ \Sigma x_i y_i & \Sigma x_i^2 \end{array} \right| = \frac{1}{\Delta'} \left(\Sigma x_i^2 \Sigma y_i - \Sigma x_i \Sigma x_i y_i \right)
\]

\[
b = \frac{1}{\Delta'} \left| \begin{array}{c} N \\ \Sigma x_i \\ \Sigma x_i y_i \end{array} \right| = \frac{1}{\Delta'} \left(N \Sigma x_i y_i - \Sigma x_i \Sigma y_i \right)
\]

\[
\Delta' = \left| \begin{array}{cc} N & \Sigma x_i \\ \Sigma x_i & \Sigma x_i^2 \end{array} \right| = N \Sigma x_i^2 - (\Sigma x_i)^2
\]

- Kutz’s book pitches it slightly differently:

Upon rearranging, the 2×2 system of linear equations is found for A and B:

\[
\begin{pmatrix}
\sum_{k=1}^{n} x_k^2 & \sum_{k=1}^{n} x_k \\
\sum_{k=1}^{n} x_k & n
\end{pmatrix}
\begin{pmatrix}
A \\
B
\end{pmatrix} =
\begin{pmatrix}
\sum_{k=1}^{n} x_k y_k \\
\sum_{k=1}^{n} y_k
\end{pmatrix}.
\]

This equation can be easily solved using the backslash command in MATLAB.
Do you speak Matlab?
Computational methods to minimize χ^2

- Matlab has numerous built-in functions. For a linear fit (and other polynomials), one can use `polyfit.m` (see example code EXregression1.m for syntax).

- For the linear case, the preceding formulae for the exact solution provide an explicit recipe (see example code EXregression1.m for syntax).

- Brute force estimate χ^2 for a range of parameter values and see which ones provide the smallest value. Refine your search and repeat. (this is called the grid-search method)

FIGURE 8.2
Chi-square hypersurface as a function of two parameters.
% ### EXregressionEX1.m ### 10.03.14
% Fit a straight line: y(x) = a + b*x (i.e., find optimal values for a and
% b for a linear function to a given set of data) using three methods:
% Method 1. Matlab's built-in blackbox function polyfit.m
% Method 2. exact analytic solution (via Bevington)
% Method 3. brute force minimizing chi-squared via a grid-search method (user specifies grid)
% --> assumes sigma_i=1 for all points (i.e., unit variance, const. for all points)

clear; figure(1); clf;
% -------------------------------------
% specify range of x-values
xMin= 0; % min.
xMax= 2; % max.
xNum= 100; % number of 'data' points
% choose parameters of linear function (y=aD+bD*x+noise)
aD= 0.15; % intercept
bD= 0.44; % slope
noiseF= 0.1; % noisefactor {0.1}
% define 'grid' range for Method 2 (i.e., one needs to 'guess' here!)
gridA= linspace(0.1,0.4,100); % intercept
gridB= linspace(0.1,0.5,100); % slope
% -------------------------------------
data.x= linspace(xMin,xMax,xNum);
data.y= aD+ bD*data.x+ noiseF*randn(numel(data.x),1)'; % determine noisy (straight) line
% ------------
% Method 0: Built-in Matlab function
[p0,S]= polyfit(data.x,data.y,1);
% also calculate r^2 (coefficient of determination) via
yfit= polyval(p0,data.x); % this line is equivalent to > yfit = p(1) * x + p(2);
yresid = data.y - yfit;
SSresid = sum(yresid.^2);
SStotal = (length(data.y)-1) * var(data.y);
RS0= 1 - SSresid/SStotal;
disp(['Method 0 (via polyfit): y= ',num2str(p0(2)),' + ',num2str(p0(1)),'*x (r^2 = ',num2str(RS0),',)']);
 Assumes all uncertainties are equal (σ=σ₁)
% Method 1: Exact linear regression (see ch.6 from Bevington, eqns.6.13 and 6.23)
Delta = N*sum(data.x.^2)-sum(data.x).^2;
\[a1 = \frac{1}{\Delta}(\text{sum}(data.x.^2)*\text{sum}(data.y) - \text{sum}(data.x)*\text{sum}(data.x.*data.y)); \]
\[b1 = \frac{1}{\Delta}(N*\text{sum}(data.x.*data.y) - \text{sum}(data.x)*\text{sum}(data.y)); \]
\[\sigma_{A1} = \sqrt{\frac{1}{\Delta}\text{sum}(data.x.^2)}; \]
\[\sigma_{B1} = \sqrt{\frac{N}{\Delta}}; \]
% also calculate \(r^2 \) (coefficient of determination) via
meanY = sum(data.y)/N;
bottom1 = sum((data.y-meanY).^2);
top1 = sum((data.y-a1-b1*data.x).^2);
RS1 = 1-top1/bottom1;
disp(['Method 1 (exact): y= ',num2str(a1),' + ',num2str(b1),'*x (r^2 = ',num2str(RS1),')']);
disp(['Method 1 (exact) standard deviations: SD.a= ',num2str(sigmaA1),', SD.b= ',num2str(sigmaB1)]);

% Method 2: Brute-force minimize chi-squared via grid search
for n=1:numel(gridA)
 for m=1:numel(gridB)
 aT= gridA(n); % extract 'test' parameters
 bT= gridB(m);
 chiS(n,m) = sum((data.y-aT-bT*data.x).^2); % determine chi-squared and store away
 end
end
% determines coords. of global minimum in chi-squared array (two lines
% below are a quick/dirty way to find the desired coords.)
[junk,indxT] = min(chiS(:));
[p,q] = ind2sub(size(chiS),indxT);
\[a2 = \text{gridA}(p); \quad b2 = \text{gridB}(q); \]
\[\text{top2} = \text{sum}((\text{data.y}-a2-b2*\text{data.x}).^2); \]
\[\text{RS2} = 1-\text{top2}/\text{bottom1}; \]
disp(['Method 2 (grid-search): y= ',num2str(a2),' + ',num2str(b2),'*x (r^2 = ',num2str(RS2),')']);

% visualize
plot(data.x,data.y,'r.'); % original 'data' points
hold on; grid on; xlabel('x'); ylabel('y'); axis([xMin xMax floor(min(data.y)) ceil(max(data.y))]);
plot(data.x,aD+bD*data.x,'g-','LineWidth',2); % base function (sans noise)
plot(data.x,p0(2)+p0(1)*data.x,'k+'); % Method 0 fit
plot(data.x,a1+b1*data.x,'b-'); % Method 1 fit
plot(data.x,a2+b2*data.x,'m*'); % Method 2 fit
legend('noisy data','base function','Method 0 fit','Method 1 fit','Method 2 fit','Location','NorthWest');
EXregression1.m

Base function: $y = a + b \times x = 0.15 + 0.44 \times x$ (+ Gaussian noise)
Method 0 (via polyfit): $y = 0.1625 + 0.43308 \times x \ (r^2 = 0.83969)$
Method 1 (exact): $y = 0.1625 + 0.43308 \times x \ (r^2 = 0.83969)$
Method 1 (exact) standard deviations: SD.a = 0.19851, SD.b = 0.17148
Method 2 (grid-search): $y = 0.16364 + 0.43131 \times x \ (r^2 = 0.83967)$
Least squares

Bonus: We can use regression to estimate the uncertainty in our determined parameters!

\[\sigma_a^2 = \sum_{j=1}^{N} \frac{\sigma_j^2}{\Delta^2} \left[\frac{1}{\sigma_j^4} \left(\sum \frac{x_i^2}{\sigma_i^2} \right)^2 - \frac{2x_j}{\sigma_j^2} \sum \frac{x_i^2}{\sigma_i^2} \sum \frac{x_i}{\sigma_i} + \frac{x_j^2}{\sigma_j^2} \left(\sum \frac{x_i}{\sigma_i} \right)^2 \right] \]

\[= \frac{1}{\Delta^2} \left[\sum \frac{1}{\sigma_j^2} \left(\sum \frac{x_i^2}{\sigma_i^2} \right)^2 - 2 \sum \frac{x_j}{\sigma_j^2} \sum \frac{x_i^2}{\sigma_i^2} \sum \frac{x_i}{\sigma_i} + \sum \frac{x_j^2}{\sigma_j^2} \left(\sum \frac{x_i}{\sigma_i} \right)^2 \right] \]

\[= \frac{1}{\Delta^2} \left(\sum \frac{x_i^2}{\sigma_i^2} \right) \left[\sum \frac{1}{\sigma_j^2} \sum \frac{x_i^2}{\sigma_i^2} \right] - \left(\sum \frac{x_i}{\sigma_i} \right)^2 \]

\[= \frac{1}{\Delta} \sum \frac{x_i^2}{\sigma_i^2} \]

\[\sigma_b^2 = \sum_{j=1}^{N} \frac{\sigma_j^2}{\Delta^2} \left[\frac{x_j^2}{\sigma_j^4} \left(\sum \frac{1}{\sigma_i^2} \right)^2 - \frac{2x_j}{\sigma_j^2} \sum \frac{1}{\sigma_i^2} \sum \frac{x_i}{\sigma_i} + \frac{1}{\sigma_j^4} \left(\sum \frac{x_i}{\sigma_i} \right)^2 \right] \]

\[= \frac{1}{\Delta^2} \left[\sum \frac{x_j^2}{\sigma_j^2} \left(\sum \frac{1}{\sigma_i^2} \right)^2 - 2 \sum \frac{x_j}{\sigma_j^2} \sum \frac{1}{\sigma_i^2} \sum \frac{x_i}{\sigma_i} + \sum \frac{1}{\sigma_j^2} \left(\sum \frac{x_i}{\sigma_i} \right)^2 \right] \]

\[= \frac{1}{\Delta^2} \left(\sum \frac{x_j^2}{\sigma_j^2} \right) \left[\sum \frac{1}{\sigma_j^2} \sum \frac{1}{\sigma_i^2} \right] - \left(\sum \frac{x_i}{\sigma_i} \right)^2 \]

\[= \frac{1}{\Delta} \sum \frac{1}{\sigma_i^2} \]

These expressions simplify further when all uncertainties are equal (\(\sigma = \sigma_i \)):

\[\sigma_a^2 = \frac{\sigma^2}{\Delta'} \sum x_i^2 \quad \text{and} \quad \sigma_b^2 = N \frac{\sigma^2}{\Delta'} \]

Can also calculate a ‘goodness-of-fit’ parameter \(r^2 \) (‘coefficient of determination’)

Bevington (2003)
Class exercises

- Use deplot.m to extract the data points from the steady-state phase of the micro-mechanical oscillator or Anscombe’s quartet.

- Can you reproduce the same linear fits for each member of the quartet?

- Modify EXregression1.m to allow for random uncertainty associated with each data point.

- Think about how the ideas here for the linear case could be extended to nonlinear functions.

\[\delta(\omega) = \arctan \left(\frac{\gamma \omega}{\omega^2 - \omega_0^2} \right) \]

- What is we didn’t have a specific function in mind? Can we still fit a curve in some useful way using regression?
Summary (re linear least squares)

Starting point:
- data
- ‘model’

‘Fit’ a curve (straight line) to data
→ optimization problem!

\[a = \frac{1}{\Delta} \begin{vmatrix} \sum \frac{y_i}{\sigma_i^2} & \sum \frac{x_i}{\sigma_i^2} \\ \sum \frac{x_i y_i}{\sigma_i^2} & \sum \frac{x_i^2}{\sigma_i^2} \end{vmatrix} = \frac{1}{\Delta} \left(\sum \frac{x_i^2}{\sigma_i^2} \sum \frac{y_i}{\sigma_i^2} - \sum \frac{x_i}{\sigma_i^2} \sum \frac{x_i y_i}{\sigma_i^2} \right) \]

\[b = \frac{1}{\Delta} \begin{vmatrix} \sum \frac{1}{\sigma_i^2} & \sum \frac{y_i}{\sigma_i^2} \\ \sum \frac{x_i}{\sigma_i^2} & \sum \frac{x_i y_i}{\sigma_i^2} \end{vmatrix} = \frac{1}{\Delta} \left(\sum \frac{1}{\sigma_i^2} \sum \frac{x_i y_i}{\sigma_i^2} - \sum \frac{x_i}{\sigma_i^2} \sum \frac{y_i}{\sigma_i^2} \right) \]

\[\Delta = \begin{vmatrix} \sum \frac{1}{\sigma_i^2} & \sum \frac{x_i}{\sigma_i^2} \\ \sum \frac{x_i}{\sigma_i^2} & \sum \frac{x_i^2}{\sigma_i^2} \end{vmatrix} = \sum \frac{1}{\sigma_i^2} \sum \frac{x_i^2}{\sigma_i^2} - \left(\sum \frac{x_i}{\sigma_i^2} \right)^2 \]

\(\chi^2 \) 'Goodness of fit' parameter

\(x = A \backslash b \)

Be smart about the assumptions you make!

Method: Exact solution

Method: Matrix solution

Method: Brute force minimizing \(\chi^2 \)

FIGURE 8.2
Chi-square hypersurface as a function of two parameters.