
Computational Methods (PHYS 2030)

York University
Winter 2018
Lecture 16

Instructors: Prof. Christopher Bergevin (cberge@yorku.ca)

Schedule: Lecture: MWF 11:30-12:30 (CLH M)

Website: http://www.yorku.ca/cberge/2030W2018.html

Aside: ”AI” & Computing

Aside: ”AI” & Computing

PHYS	2030	is	chiefly	focused	on	specifically	telling	a	computer	what	to	do.	
But	the	“future”	of	computing	is	likely	a	bit	different:	

Tell	the	computer	how	to	“learn”	so	to	do	it	itself….

Review: Nonlinear regression EXregression5.m

−3 −2 −1 0 1 2 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

X

Y

Nonlinear Regression

Ø What	if	you	decide	the	data	is	not	best	fit	with	a	simple	linear	function	nor	a	
polynomial?

à Let’s	try	to	fit	the	(nonlinear)	function	we	have	as	our	“model”

(sinusoidally driven)	Micro-mechanical	
resonator	steady-state	phase

% User Inputs
fileL= 'extractedData.txt'; % file containing the steady-state phase data to fit

%Next, we'll define the initial parameters for the fit.
%fit.m requires the fitting function to have all possible model parameters
%to be fields of a single structure. These fields can be single elements,
%or they can be vectors or matrices.
initP.AA = 1; % provide some rough starting point for each parameters
initP.BB = 4; % (only need to specify params. here relevant to fitting)

% 'freeList' is a cell array of strings that holds the names of the model
% parameters to be allowed to vary in the optimization routine.
%freeList = {'BB'} % only fit one parameter, keep others const. at initial guess
freeList = {'AA','BB'}; % fit all three params.
% ---

ssP= load(fileL); % load in data and extract appropriate x and y values
xL= ssP(:,1);
xL= log(xL); % do fit on log axes
y= ssP(:,2)*pi/180; % convert phase to rads

%Now plot the data and save the graphics handles.
figure(1); clf
%plot_handle = plot(xL,y,'b-','LineWidth',2); hold on
plot_handle = semilogx(xL,y,'b-','LineWidth',2); hold on
plot(xL,y,'r.');
text_handle = text(mean(xL),max(y)+1,'','HorizontalAlignment','center','FontSize',14);
xlabel('Frequency [kHz]');ylabel('Phase [rads]');

%Call 'fit'. Note the order of the input parameters:
%1) fitted function name
%2) initial parameter structure
%3) list of free parameters
%4) 2nd parameter to be sent into the fitted function ...
[bestP,err] = fit('myTestFunction2',initP,freeList,xL,y,plot_handle,text_handle);

EXregression6.m

à Remember	that	
we	extracted	the	
values	via	deplot.m

function err = myTestFunction2(p,x,y,plot_handle,text_handle)
% Calculates the sum of squared error between y and the predicted function,
% which is the sum of a sinusoid and a 2nd order polynomial.

predY = atan((p.AA*x)./(x.^2-p.BB^2)); % explicit form of fitting function

% calculate chi-squared (this is what we want to minimize) by comparing to
% actual dependent variable (i.e. the y-data to fit to)
err = sum((y-predY).^2);

% deal with graphics update
set(plot_handle,'YData',predY);
txt=sprintf(' ');
set(text_handle,'String',txt);
drawnow

myTestFunction2.m

function [params,err] = fit(funName,params,freeList,varargin)
%Helpful interface to matlab's 'fminsearch' function.
%
%turn free parameters in to 'var'
if isfield(params,'options')

options = params.options;
else

options = [];
end

if isempty(freeList)
freeList = fieldnames(params);

end

vars = params2var(params,freeList);

if ~isfield(params,'shutup')
disp(sprintf('Fitting "%s" with %d free parameters.',funName,length(vars)));

end

vars = fminsearch('fitFunction',vars,options,funName,params,freeList,varargin);

%get final parameters
params= var2params(vars,params,freeList);

%evaluate the function

evalStr = sprintf('err = %s(params',funName);
for i=1:length(varargin)

evalStr= [evalStr,',varargin{',num2str(i),'}'];
end
evalStr = [evalStr,');'];
eval(evalStr);

fit.m

100
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Frequency [kHz]

Ph
as

e
[ra

ds
]

àWhy	the	worse	fit?

EXregression6.m

wikipedia (inverse	trigonometric	functions)

Ø Think	about	the	nature	of	both	the	function	
you	are	trying	to	fit	and	the	data

‘Golden rules’ of (2030) computing

#1 – The	computer	only	does	what	you	tell	it	to	do

Ø Also	consider:	
§ Log	abscissa
§ Extracted	points	match?
§ Better	choice	for	‘suggested’	

initial	parameters	to	try?

à Think	about	how	we	could	improve	our	calculation/code

To try yourself….

Ø Reproduce	the	determined	fit	(quadratic)	parameters	for	the	thermocouple	
example

Ø Compare	how	parameters	differ	for	the	intercept	and	slope	when	fitting	a	
(noisy)	set	of	linear	data	with	a	quadratic	function

Ø Try	running	EXregression5.m.	What	happens	if	you	specify	a	different	‘test	
function’?

Ø How	might	you	modify	EXregression6.m	(or	myTestFunction2.m)	such	that	the	
fit	to	the	micro-mechanical	resonator	steady-state	phase	is	improved?		

Nonparametric Regression

Ø What	if	you	have	no	idea	the	form	of	the	function	to	fit?	Or	you	don’t	want	to	
assume	a	particular	form	(i.e.,	you’d	prefer	to	let	the	data	dictate	the	trend)?

wikipedia (nonparametric	regression)
Bergevin	et	al.	(2010)

“Nonparametric	regression	is	a	form	of	regression	analysis	in	which	the	predictor	does	not	take	a	
predetermined	form	but	is	constructed	according	to	information	derived	from	the	data.	
Nonparametric	regression	requires	larger	sample	sizes	than	regression	based	on	parametric	models	
because	the	data	must	supply	the	model	structure	as	well	as	the	model	estimates.”

Ø What	‘shape’	do	the	data	have?	Is	there	a	
trend?

Ø How	might	we	go	about	finding	the	‘best’	
trend	with	the	fewest	number	of	
assumptions?

à This	sort	of	situation	is	very	common	
in	numerous	scientific	and	engineering	
applications!

Aside: Interpolation

x=linspace(0,3,15);
y= 1+2*x+ 0.1*randn(numel(x),1)';
plot(x,y,'o-’)

plotSyntax.m

0 0.5 1 1.5 2 2.5 3
1

2

3

4

5

6

7

8

x

y
Ø What	is	the	line	

between	points?

Ø What	exactly	does	
plot.m do?

Ø Can	we	determine	a	
‘better’	curve?

Note	the	basic	question	here:	
What	happens	between points?

à Straight	lines	are	a	good	starting	
point,	but	we	can	do	better!

Interpolation	–
The	process	of	determining	the	value	of	
a	function	between	two	points	at	which	
it	has	prescribed	values

‘Polynomial wiggle’

wikipedia (Runge's phenomenon)

Ø Problem:	Fitting	with	
(high-ish order)	
polynomials	can	be	
problematic

The red	curve is	the	Runge
function.	The blue	curve is	a	5th-
order	interpolating	polynomial	
(using	six	equally	spaced	
interpolating	points).	The green	
curve is	a	9th-order	interpolating	
polynomial	(using	ten	equally	
spaced	interpolating	points).
At	the	interpolating	points,	the	
error	between	the	function	and	
the	interpolating	polynomial	is	(by	
definition)	zero.	Between	the	
interpolating	points	(especially	in	
the	region	close	to	the	endpoints	
1	and	−1),	the	error	between	the	
function	and	the	interpolating	
polynomial	gets	worse	for	higher-
order	polynomials.

Splines

Kutz (2013)

Ø Basic	idea	is	to	do	a	‘local’	fit,	
using	a	polynomial	of	low-
enough	order	to	avoid	‘wiggle’,	
but	high	enough	to	capture	the	
basic	features	(i.e.,	curvature)	
of	the	data

à Think	carefully	about	the	three	different	types	of	curves	above	

Ø A	form	of	‘smoothing’	to	interpolate	noisy	data	

Ø “A	spline or	the	more	modern	term	
flexible	curve consists	of	a	long	strip	
fixed	in	position	at	a	number	of	
points	that	relaxes	to	form	and	hold	a	
smooth	curve	passing	through	those	
points	for	the	purpose	of	transferring	
that	curve	to	another	material.”
[wikipedia (flat	spline)]

Splines

http://www.math.ucla.edu/~baker/149.1.02w/handouts/dd_splines.pdf

Cubic splines

Ø By	default,	Matlab’s spline.m uses	a	cubic	polynomial

“A	tridiagonal linear	system	(with,	possibly,	several	right	sides)	is	being	solved	for	the	
information	needed	to	describe	the	coefficients	of	the	various	cubic	polynomials	which	
make	up	the	interpolating	spline.	spline	uses	the	functions	ppval,	mkpp,	and	unmkpp.	
These	routines	form	a	small	suite	of	functions	for	working	with	piecewise	polynomials.”

http://www.mathworks.com/help/matlab/ref/spline.html

Basic	idea:	Cubic	provides	good	balance	between	simplicity	and	capturing	curvature

Note:	Curve	fitting	is	so	important/ubiquitous,	Matlab has	a	whole	
separate	‘Curve	Fitting	Toolbox’		

Ø Basic	algorithm	consists	of:

§ Fitting	a	cubic	polynomial	to	a	limited/centered	group	of	data	points
§ Set	various	properties	(e.g.,	2nd derivative)	equal	at	the	endpoints	to	guarantee	

smoothness	(‘piecewise	continuity’)
§ Solve	the	resulting	(linear)	equations	(which	typically	have	a	nice	matrix	form)

EXsplines1.m
% ### EXsplines1.m ### 10.09.14
% Determine cublic spline fit to a set of (specified) data. Does this three
% ways:
% Method 0 - via built-in Matlab spline.m function
% Method 1 - via built-in Matlab interp1.m function
% Method 2 - directly coded
% Method 3 - polynomial of order n-1 (where n=numel(x))

% source code for doing cubic spline (sans Matlab spline.m) is
% http://m2matlabdb.ma.tum.de/cspline.m?MP_ID=14

clear; figure(1); clf;
% -----------------------------
% User Inputs

N= 70; % # of points for fit (over interval [min(x) max(x)])

% define 'data' (see pg.69 from Kuts, 2013)
x= [0 0.5 1.1 1.7 2.1 2.5 2.9 3.3 3.7 4.2 4.9 5.3 6.0 6.7 7.0];
y= [1.1 1.6 2.4 3.8 4.3 4.7 4.8 5.5 6.1 6.3 7.1 7.1 8.2 6.9 5.3];

% ---
xx= linspace(min(x),max(x),N); % determine fit x-values

% ------------
% Method 0: Built-in Matlab function spline.m
yspline0= spline(x,y,xx);

% ------------
% Method 1: Built-in Matlab function interp1.m
yspline1= interp1(x,y,xx,'spline');

% Note: Other options for interp1 exists, such as:
% > yspline1= interp1(x,y,xx); % straight line nearest neighbor interp (default for plot.m)
% > yspline1= interp1(x,y,xx,'nearest'); %

% ------------
% Method 2: Direct computation of splines (see comments at top for source)
n = numel(x); % # of points to be fit
if n ~= length(y)-2 & n ~= length(y)
error(['y has to be of length length(x) + 2 or length(x)']);

end
if n < 2, error('only one value given, can not interpolate'); end
% check for the slopes at the endpoints being given or not
[nr,nc] = size(y);
if nr == 1, y = reshape(y,nc,1); nr= nc; end
[nr,nc] = size(x);
if nr == 1, x = reshape(x,nc,1); nr= nc; end
if(length(y) == length(x))
naturalInterpolation = 1;
dy_l = 0;
dy_r = 0;

else
naturalInterpolation = 0;
% y consists of the slopes at the endpoints and of the values of y
dy_l = y(1);
dy_r = y(n+2);
y = y(2:n+1);

end
if size(x) ~= size(y), error('x and y are of different size'); end
dx = [0; diff(x); 0];
dxx = dx(1:n) + dx(2:n+1);
% assemble matrix and rhs
M = spdiags([[dx(2:n)./dxx(2:n); 0] 2*ones(n,1) [0; dx(2:n)./dxx(1:n-1)]], -1:1, n,n);
% compute the rhs using aitken-neville scheme
% c : second derivative
% a = y: values of y
% b : first derivative
% d : third derivative
b = diff(y) ./ dx(2:n);
c = 6 * diff([dy_l; b; dy_r])./ dxx;
% For natural spline interpolation
if(naturalInterpolation == 1)
c(1) = 0;
c(n) = 0;
M(1,2) = 0;
M(n,n-1) = 0;

end
c = M\c;
d = diff(c)./dx(2:n);
b = b - dx(2:n).* (c(1:n-1)/3 + c(2:n)/6);

% now compute the values yy (i.e., the fit)
yspline2 = zeros(size(xx));
for i=1:nr-1
I = find(xx <= x(i+1) & xx >= x(i));
yspline2(I) = y(i) + b(i)*(xx(I)-x(i))+c(i)/2*(xx(I)-x(i)).^2 + ...

d(i)/6*(xx(I)-x(i)).^3;
end

% ------------
% Method 3: polynomial fit via built-in Matlab function polyfit.m
coeff= polyfit(x,y,numel(x)-1);
ypoly= polyval(coeff,xx);

% ------------
% plot the data
figure(1); clf
hold on; grid on;
xlabel('x');ylabel('y');
plot(xx,yspline0,'ks','MarkerSize',6)
plot(xx,yspline1,'g.')
plot(xx,yspline2);
plot(xx,ypoly,'m--','LineWidth',2)
plot(x,y,'ro','MarkerSize',7,'LineWidth',2);
axis([-0.2 7.2 0.5 8.5])

EXsplines1.m

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

x

y

spline.m
interp1.m
direct calculation
polynomial
original data

EXsplines1.m

Kutz (2013)

Ø Bad	choices	made	here?

Ø Good	choices	made	here?

Aside: De-noising images

Ø De-noising	(or	“smoothing”)	can	arise	in	a	
variety	of	contexts….

Locally-weighted polynomial regression (loess)

Ø Basic	idea:	Do	a	‘local’	regression	(loess	=	‘LOcal regrESSion’)	to	get	a	
smooth	trend	curve

Ø Perform	a	least-squares	fit	to localized	subsets of	the	data.	Can	also	allow	for	
weighting	to	be	factored	in	(just	like	the	standard	deviation	we	saw	for	linear	
regression)	

Ø Similar	in	spirit	to	splines,	
just	a	bit	more	general

à [Reemphasis]	This	sort	of	situation	is	
very	common	in	numerous	scientific	and	
engineering	applications!

à chiefly	dictated	by	the	data,	not	any	‘model’	assumptions

Locally-weighted regression (loess)

Ø Has	both:	
§ Pros (e.g.,	model-independent,	

determines	interpolative	trend	
from	data	directly)	&

§ Cons (e.g.,	does	not	‘model’	the	
data	per	se,	can	be	
computationally	
intensive/inefficient)

Ø Can	also	be	sensitive	to	outliers,	so	be	careful	(be	smart	up	front	about	how	to	
handle	your	data!)

‘Golden rules’ #1 – The	computer	only	does	what	you	tell	it	to	do

% ### EXloess1.m ### 10.12.14
% Determine loess fit to a set of randomly-generated noisy data

% Note: Requires loess.m [hacked together by C. Shera]

clear; figure(1); clf;
% -----------------------------
% User Inputs

N= 100; % # of points for fit (over interval [min(x) max(x)])
xR= [0 1]; % range of x-values
scaleN= 0.1; % scale factor for noise

alpha= 0.1; % loess fit parameter (between 0 and 1)
order= 1; % order of polynomial for fit

% ---
x= linspace(min(xR),max(xR),N); % determine fit x-values
polyS= ceil(10*rand(1)); % randomly determine polynomial order
Pv= 2*rand(polyS,1)-1; % polynomial coefficients
y= polyval(Pv,x)+ rand(1)*sin(2*pi*x)+ scaleN*randn(N,1)'; % pseudo-random 'data'

% ---
xFit= linspace(min(xR),max(xR),N); % can 'resample' if desired (i.e., need not have xFit=x)
yFit= loess(x,y,xFit,alpha,order,[],1,0,0.1); % loess fit via external function

% ---
% visualize
plot(x,y,'ko'); hold on; grid on;
plot(xFit,yFit,'r-');
xlabel('x'); ylabel('y');
legend('original data','loess trend');

EXloess1.m

Ø What	type	of	polynomial	is	being	used	
here?

function y = loess (xi,yi,x,alpha,lambda,weights,robust,collapse,dither)
% y = loess (xi, yi, ?x=unique(xi)?, ?alpha=0.1?, ?lambda=1?, ?weights=[]?,
% ?robust=0?, ?collapse=0?, ?dither=0?)
% Returns the loess fit y(x) to data points yi(xi) having optional
% weights (e.g., weights = 1/sigma_yi^2). The smoothing
% parameter alpha (alpha<1) is the fraction of the total number
% of data points to fit. Typically, alpha<<1 (so that the
% fit is *local*). Uses a polynomial fit of order lambda.
% Note that the data (xi,yi) do NOT need to be pre-sorted by xi,
% (but its a good idea to do so if you intend to plot the results!)
%
% The robust option computes an iterated robust loess fit.
% First, an initial (un-robust) loess fit is performed. The
% weights are then modified (based on the residuals to reduce
% the influence of outliers) and a new fit performed.
% Ideally, the cycle of fitting and adjusting weights based on
% residuals is iterated until the fit converges.
% Here, the fit is iterated a total of robust times;
% in practice robust=1 often suffices. If there are lots of
% data points, a robust fit can take a long time.
%
% The collapse option collapses all data points at the same
% value of xi and replaces the multiple yi by their median value.
% (We use the median not the mean in the hope that it'll be
% less sensitive to outliers.) Collapsing helps maintain
% the 'local' character of the fit in cases where many xi have
% multiple corresponding yi.
% (Note that the computation of the mean or median should take the weights
% into account and new weights should be computed using the variance.
% But we need to figure out what weights should be assigned to non-repeated
% values.)
%
% The dither option dithers the xi randomly by dither percent
% using a Gaussian distribution. Dithering is an alternative
% solution to the 'duplicate xi problem' addressed by collapsing.
% If dither is set, collapse is unset.
%
% Reference:
% Visualizing Data, William S. Cleveland
% Hobart Press, 1993, pg 100ff
%
% Hacked together by C.A. Shera

loess.m

http://web.mit.edu/apg/

function y = loess (xi,yi,x,alpha,lambda,weights,robust,collapse,dither)
% y = loess (xi, yi, ?x=unique(xi)?, ?alpha=0.1?, ?lambda=1?, ?weights=[]?,
% ?robust=0?, ?collapse=0?, ?dither=0?)

%% Hacked together by C.A. Shera
%

if (nargin < 3 | isempty (x)), x = unique(xi); end;
if (nargin < 4 | isempty (alpha)), alpha = 0.1; end;
if (nargin < 5 | isempty (lambda)), lambda = 1; end;
if (nargin < 6 | isempty (weights)), weights = ones(size(yi)); end;
if (nargin < 7 | isempty (robust)), robust = 0; end;
if (nargin < 8 | isempty (collapse)),collapse = 0; end;
if (nargin < 9 | isempty (dither)), dither = 0; end;

if (dither), collapse=0; end

% collapse repeated values...
if (collapse)
[sxi,I,J] = unique (xi);
syi = zeros(size(sxi));
wgt = zeros(size(sxi));
for k = 1:length(sxi)
avg_me = find (J==k);
syi(k) = median (yi(avg_me)); % should use weights
wgt(k) = mean (weights(avg_me)); % coarse

end
xi = sxi;
yi = syi;
weights = wgt;

end

% dither the xi...
if (dither ~= 0)
xi = xi .* (1 + dither*randn(size(xi))/100);

end

n = length (xi);
q = min (n, round (abs (alpha)*n));

% do sanity control on the robust flag since
% we later use it to control the iteration...
robust = round (abs (robust));

weights = abs (weights); % must be non-negative
original_weights = weights; % save for later

if (~robust)
% allocate some space for the fit...
y = zeros (size (x));

end

% we dither the xi by a small random amount to prevent
% there from being lots of repeated xi values, which can cause
% havoc when trying to determine the q closest values...
% xi = xi .* (1 + 1e-6*randn(size(xi)));

% iterate to obtain robust fits at the points xi...
while (robust)
robust = robust - 1;

% do a normal loess fit at points xi (not x) using the current weights
y = loess (xi,yi,xi,alpha,lambda,weights,0,collapse);

% compute residuals from fit...
res = yi - y;

% Compute bisquare robustness weighting function using the residuals...
% Outliers (points with large residuals) receive a weighting near zero.
mar = median (abs (res)); % median absolute residual
u = res / (6*mar);

% before iterating the fit, modify the original weights
% using the bisquare robustness weighting...
weights = original_weights .* bisquare (u);

end

y = zeros (size(x)); % allocation

% after this loop, robust is always zero...
% Loop over x (not xi) ...

flag=0;
for i = 1:length (x)
% Compute the tricube weighting functions...
% Points are weighted by their distance from x(i) using a
% variable window defined so that the qth most distant point
% has w=0. Except near the ends, the window will typically
% be roughly symmetric about x(i). Note that when determining
% the qth most distant point, we count points at the same xi
% as one. This differs from Cleveland's description, but is
% more robust (and sensible?) in certain pathological cases.

Delta = abs (xi-x(i));
Delta_q = unique (Delta); % sort array, removing duplicates

% multiply in the tricube weighting...
w = weights .* tricube (Delta/Delta_q(q));

% Locate the points to fit...
fit_me = find (w>0);

% take care of various pathological cases...
switch (length(fit_me))
case 0
if flag== 0 warning ('loess: Empty window! Using NaN.'); end
y(i) = NaN;
flag= 1;
continue;

case 1
if flag== 0 warning ('loess: Single point in window! Skipping fit.'); end
y(i) = yi(fit_me);
flag= 1;
continue;

otherwise
lam = min(lambda,length(fit_me)-1);
if (lam ~= lambda)
if flag== 0 warning ('loess: Too few points in window! Reducing lambda.'); end
flag= 1;

end

% Do the fit...
if (lam==1)

% MUCH faster than polyfitw in linear case
[a,b] = linear_fit (xi(fit_me),yi(fit_me),1./sqrt(w(fit_me)));
y(i) = a + b*x(i);
else

p = polyfitw (xi(fit_me),yi(fit_me),lam,w(fit_me));
y(i) = polyval (p,x(i));
end

end
end
return

% +++

function T = tricube (u)
u = abs (u);
T = zeros (size (u));
i = find (u<1);
T(i) = (1-u(i).^3).^3;
return

% +++

function T = bisquare (u)
u = abs (u);
T = zeros (size (u));
i = find (u<1);
T(i) = (1-u(i).^2).^2;
return

loess.m

http://web.mit.edu/apg/

EXloess1.m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

original data
loess trend

alpha= 0.1; yFit= loess(x,y,xFit,alpha,1,[],1,0,0.1);

EXloess1.m

alpha= 0.3;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

original data
loess trend

EXloess1.m

alpha= 0.05;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

x

y

original data
loess trend

Summary (regression)

Key	quantity	in	‘least	squares’	analysis	is	c2 (“chi-
squared”),	which	you	want	to	minimizeStarting	point	is	some	data,	which	you	may	want	

to	fit	a	specific	function	to	or	determine	a	trend

Regression	can	be	linear	or	nonlinear,	the	latter	
leading	to	some	tricky	computational	approaches

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

original data
loess trend

Non-parametric	regression	(e.g.,	cubic	splines,	loess)	
can	be	very	useful	for	finding	trends	sans	a	‘model’

Post-class exercises

Ø Modify	the	loess	code	to	see	how	the	trend	varies	for	different	order	
polynomials.	And	what	happens	if	you	modify	the	other	parameters	(e.g.,	
‘robust’)?

Ø Modify	the	loess	code	to	introduce	a	randomized	uncertainty	for	each	point	
and	use	such	for	a	‘weighting’	in	computation	of	the	trend

Ø How	might	you	modify	EXregression6.m	(or	myTestFunction2.m)	such	that	the	
fit	to	the	micro-mechanical	resonator	steady-state	phase	is	improved?		

Ø What	is	the	distinction	(if	any)	between	‘interpolation’	and	‘curve	fitting’?

Coming up next.... EXfractal1.m

