Computational Methods (PHYS 2030)

Instructors: Prof. Christopher Bergevin (cberge@yorku.ca)

Schedule: Lecture: MWF 11:30-12:30 (CLH M)

Website: http://www.yorku.ca/cberge/2030W2018.html

York University
Winter 2018
Lecture 16

Aside: "Al" & Computing
The Economist February 17th 2018

Artificial intelligence

Peering into the black box

HERE is an old joke among

pilots that says the ideal
flight crew is a computer, a pilot
and a dog. The computer’s job is
to fly the plane. The pilot s there
to feed the dog. And the dog’s
jobis tobite the pilotif he tries to
touch the computer.

Aside: "Al" & Computing The Economist February 17th 2018

Artificial intelligence

Peering into the black box

Handing complicated tasks to computers is not new. But a
recent spurt of progress in machine learning, a subfield of arti-
ficial intelligence (A1), has enabled computers to tackle many
problems which were previously beyond them. The result has
been an A1 boom, with computers moving into everything

from medical diagnosis and insurance to self-driving cars.

PHYS 2030 is chiefly focused on specifically telling a computer what to do.
But the “future” of computing is likely a bit different:

Tell the computer how to “learn” so to do it itself....

Review: Nonlinear regression EXregression5.m

24 T T T I I

Nonlinear Regression

> What if you decide the data is not best fit with a simple linear function nor a

polynomial?

(sinusoidally driven) Micro-mechanical
resonator steady-state phase

l /] L llllll' 'l 1 . J

180 — i
Tn\ - -
o)
9 - p—
(@] - L
o)
=
@
n
S
o
a
-180 — —
I L] ’ L LI B B) ll L] L] LS L
1 10 50
Frequency (kHz)

§(w) = arctan (—

- Let’s try to fit the (nonlinear) function we have as our “model”

w2 —

EXregression6.m

% User Inputs
filel= 'extractedData.txt'; % file containing the steady-state phase data to fit

$Next, we'll define the initial parameters for the fit.
$fit.m requires the fitting function to have all possible model parameters

$to be fields of a single structure. These fields can be single elements, - Remember that
$or they can be vectors or matrices. we extracted the
initP.AA = 1; % provide some rough starting point for each parameters .

. : L values via deplot.m
initP.BB = 4; % (only need to specify params. here relevant to fitting)

% 'freeList' is a cell array of strings that holds the names of the model
% parameters to be allowed to vary in the optimization routine.
$freeList = {'BB'} % only fit one parameter, keep others const. at initial guess

freeList = {'AA','BB'}; % fit all three params.

ssP= load(filel); % load in data and extract appropriate x and y values
xL= ssP(:,1);

xL= log(xL); % do fit on log axes

y= ssP(:,2)*pi/180; % convert phase to rads

$Now plot the data and save the graphics handles.

figure(l); clf

$plot _handle = plot(xL,y, 'b-"', 'LineWidth',2); hold on

plot handle = semilogx(xL,y, 'b-', 'LineWidth',2); hold on

plot(xL,y, 'r.");

text handle = text(mean(xL),max(y)+1l,'"', 'HorizontalAlignment', 'center', 'FontSize',614);
xlabel('Frequency [kHz]');ylabel('Phase [rads]');

%Call 'fit'. ©Note the order of the input parameters:

%1) fitted function name

%2) initial parameter structure

$3) list of free parameters

$4) 2nd parameter to be sent into the fitted function ...

[bestP,err] = fit('myTestFunction2',initP, freelList,xL,y,plot handle,text handle);

myTestFunction2.m

function err = myTestFunction2(p,x,y,plot handle,text handle)
% Calculates the sum of squared error between y and the predicted function,
% which is the sum of a sinusoid and a 2nd order polynomial.

predY = atan((p.AA*x)./(x."2-p.BB"2)); % explicit form of fitting function

% calculate chi-squared (this is what we want to minimize) by comparing to
% actual dependent variable (i.e. the y-data to fit to)

err = sum((y-predY¥)."2);

$ deal with graphics update

set(plot handle, 'YData',predY);

txt=sprintf(' ');

set(text handle, 'String’',txt);

drawnow

l /] L lllllll 1l 1 . J

180 = —
Tn\ - -
()
@] .
(@) ~ .
3
W =
d(w) = arctan (ﬁ 9
ws —w @
o
<
o
~180 —

l v L] L] L I B A] L] L] L L
1 10 50
Frequency (kHz)

fit.m

function [params,err] = fit(funName,params,freelList,varargin)
$Helpful interface to matlab's 'fminsearch' function.

¢turn free parameters in to 'var'
if isfield(params, 'options')
options = params.options;
else
options = [];
end

if isempty(freeList)
freeList = fieldnames(params);
end

vars = params2var (params,freelList);

if ~isfield(params, 'shutup')
disp(sprintf('Fitting "%s" with %d free parameters.',funName,length(vars)));
end

vars = fminsearch('fitFunction',vars,options, funName,params,freelList,varargin);

$get final parameters
params= var2params(vars,params,freelList);

¢2evaluate the function

evalStr = sprintf('err = %s(params', funName);
for i=l:length(varargin)
evalStr= [evalStr,',varargin{',num2str(i),'}'];
end
evalStr = [evalStr,');'];
eval (evalStr);

Phase [rads]

0.5

10°
Frequency [kHz]

- Why the worse fit?

-y
®
o

]

Phase (degrees)

EXregression6.m

-180 —

'lll'l' L] L | S

10 50
Frequency (kHz)

. YW
‘Golden rules’ of (2030) computing d(w) = arctan 5
o

#1 — The computer only does what you tell it to do

-
[o2]
o

> Think about the nature of both the function
you are trying to fit and the data

Phase (degrees)
o
l '} J | 1 l L 1 L I

YA
-180
0 I

L] llllll' ¥ v L A

- — — 1 10 50
et
.
~

arccot(x) Frequency (kHz)

> Also consider:
o = Log abscissa
= Extracted points match?
= Better choice for ‘suggested’
initial parameters to try?

— Think about how we could improve our calculation/code

wikipedia (inverse trigonometric functions)

To try yourself....

> Reproduce the determined fit (quadratic) parameters for the thermocouple
example

» Compare how parameters differ for the intercept and slope when fitting a
(noisy) set of linear data with a quadratic function

> Try running EXregression5.m. What happens if you specify a different ‘test
function’?

> How might you modify EXregression6.m (or myTestFunction2.m) such that the
fit to the micro-mechanical resonator steady-state phase is improved?

Nonparametric Regression

> What if you have no idea the form of the function to fit? Or you don’t want to
assume a particular form (i.e., you’d prefer to let the data dictate the trend)?

“Nonparametric regression is a form of regression analysis in which the predictor does not take a
predetermined form but is constructed according to information derived from the data.
Nonparametric regression requires larger sample sizes than regression based on parametric models
because the data must supply the model structure as well as the model estimates.”

20| Aspidoscelis (10 ears) ’ > What ‘shape’ do the data have? Is there a
bbb . trend?
btt)
15 I~ Z 2 o
8, > How might we go about finding the ‘best’
& 10} MDY TN NN trend with the fewest number of
= ¥ assumptions?
50
—> This sort of situation is very common
0 in numerous scientific and engineering
applications!
_5 I] I]]] 1)
1 2 3 4 5 6 7 8
Frequency (kHz)

wikipedia (nonparametric regression)
Bergevin et al. (2010)

Aside: Interpolation plotSyntax.m

. Interpolation —
x=linspace(0,3,15); ' The process of determining the value of
y= 1+2*x+ 0.l*randn(numel(x),1)"; a function between two points at which

plot(x,y, '0o-") it has prescribed values

8 T T T T T

Note the basic question here:
What happens between points?

> Whatis the line
between points? 6

> What exactly does
plot.m do?

» Can we determine a

‘better’ curve? ar - Straight lines are a good starting
point, but we can do better!

1 | | | | |
0 0.5 1 1.5 2 2.5 3

X

‘Polynomial wiggle’

> Problem: Fitting with 1-
(high-ish order)
polynomials can be
problematic

The red curve is the Runge
function. The blue curve is a 5th-
order interpolating polynomial
(using six equally spaced
interpolating points). The green
curve is a 9th-order interpolating
polynomial (using ten equally
spaced interpolating points).

At the interpolating points, the 0-
error between the function and

the interpolating polynomial is (by
definition) zero. Between the

interpolating points (especially in -0.2
the region close to the endpoints

1 and -1), the error between the

function and the interpolating

polynomial gets worse for higher- _q 4
order polynomials.

0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

wikipedia (Runge's phenomenon)

Splines

> A form of ‘smoothing’ to interpolate noisy data

>

“A spline or the more modern term
flexible curve consists of a long strip
fixed in position at a number of
points that relaxes to form and hold a
smooth curve passing through those
points for the purpose of transferring
that curve to another material.”
[wikipedia (flat spline)]

Basic idea is to do a ‘local’ fit,
using a polynomial of low-
enough order to avoid ‘wiggle’,
but high enough to capture the
basic features (i.e., curvature)
of the data

= Think carefully about the three different types of curves above

10

o data
—LSQ
— polynomial
H = = = spline AT
R
\
- \
\
.}
_/ -
&
o
0 1 7

Kutz (2013)

Splines

Figure 1: Lagrange interpolation of data points

Figure 2: Spline interpolation of the same data points

http://www.math.ucla.edu/~baker/149.1.02w/handouts/dd_splines.pdf

Cubic splines

> By default, Matlab’s spline.m uses a cubic polynomial

Basic idea: Cubic provides good balance between simplicity and capturing curvature

“A tridiagonal linear system (with, possibly, several right sides) is being solved for the
information needed to describe the coefficients of the various cubic polynomials which
make up the interpolating spline. spline uses the functions ppval, mkpp, and unmkpp.
These routines form a small suite of functions for working with piecewise polynomials.

”

> Basic algorithm consists of:

= Fitting a cubic polynomial to a limited/centered group of data points

= Set various properties (e.g., 2" derivative) equal at the endpoints to guarantee
smoothness (‘piecewise continuity’)

= Solve the resulting (linear) equations (which typically have a nice matrix form)

Note: Curve fitting is so important/ubiquitous, Matlab has a whole
separate ‘Curve Fitting Toolbox’

http://www.mathworks.com/help/matlab/ref/spline.html

% ### EXsplinesl.m ### 10.09.14
% Determine cublic spline fit to a set of (specified) data. Does this three
% ways:

oo

Method 0 - via built-in Matlab spline.m function

% Method 1 - via built-in Matlab interpl.m function
% Method 2 - directly coded
% Method 3 - polynomial of order n-1 (where n=numel(x))

oo

source code for doing cubic spline (sans Matlab spline.m) is
http://m2matlabdb.ma.tum.de/cspline.m?MP_ID=14

oe

clear; figure(l); clf;

% User Inputs

N= 70; % # of points for fit (over interval [min(x) max(x)])
% define 'data' (see pg.69 from Kuts, 2013)

x= [0 0.5 1.1 1.7 2.1 2.5 2.9 3.3 3.7 4.2 4.9 5.3 6.0 6.7 7.0];
y=[1.1 1.6 2.4 3.8 4.3 4.7 4.8 5.5 6.1 6.3 7.1 7.1 8.2 6.9 5.3];

% Method 0: Built-in Matlab function spline.m
yspline0= spline(x,y,XX);

% Method 1: Built-in Matlab function interpl.m
ysplinel= interpl(x,y,xx, 'spline');

oo

Note: Other options for interpl exists, such as:
> ysplinel= interpl(x,y,xx); % straight line nearest neighbor interp

[*)

> ysplinel= interpl(x,y,xXx, 'nearest'); %

oo

oo

(default for

EXsplinesl.m

plot.m)

% Method 2: Direct computation of splines (see comments at top for source)

n = numel(x); $ # of points to be fit
if n ~= length(y)-2 & n ~= length(y)

error(['y has to be of length length(x) + 2 or length(x)']);
end
if n < 2, error('only one value given, can not interpolate'); end
% check for the slopes at the endpoints being given or not

[nr,nc] = size(y);
if nr == 1, y = reshape(y,nc,1l); nr= nc; end
[nr,nc] = size(x);
if nr == 1, x = reshape(x,nc,1l); nr= nc; end

if(length(y) == length(x))
naturalInterpolation = 1;

dy 1 = 0;
dy r = 0;
else

naturalInterpolation = 0;

% y consists of the slopes at the endpoints and of the values of y

dy_1 = y(1);

dy_r = y(n+2);

y = y(2:n+l);
end

if size(x) ~= size(y), error('x and y are of different size'); end

dx = [0; diff(x); 0];
dxx = dx(1l:n) + dx(2:n+1);
assemble matrix and rhs
= spdiags([[dx(2:n)./dxx(2:n); 0] 2*ones(n,1l) [0; dx(2:n)./dxx(
compute the rhs using aitken-neville scheme
second derivative
= y: values of y
first derivative
third derivative
diff(y) ./ dx(2:n);
=6 * diff([dy_1; b; dy r])./ dxx;
For natural spline interpolation

© Q O 00 0 o0 o o0 B o°
o oo

if (naturalInterpolation == 1)
c(l) = 0;
c(n) = 0;
M(1,2) = 0;
M(n,n-1) = 0;
end

c = M\c;
d = diff(c)./dx(2:n);
b=b - dx(2:n).* (c(l:n-1)/3 + c(2:n)/6);

% now compute the values yy (i.e., the fit)
yspline2 = zeros(size(xx));
for i=l:nr-1
I = find(xx <= x(it+tl) & xx >= x(1i));
yspline2(I) = y(i) + b(i)*(xx(I)-x(i))+c(i)/2*(xx(I)-x(i))."2 +
d(i)/6*(xx(I)-x(i))."3;
end

l1:n-1)]1], -1:1, n,n);

coeff= polyfit(x,y,numel(x)-1);
ypoly= polyval(coeff, xx);

% plot the data

figure(l); clf

hold on; grid on;
xlabel('x"');ylabel('y');
plot(xx,yspline0, 'ks', 'MarkerSize',6)
plot(xx,ysplinel, 'g.")
plot(xx,yspline2);
plot(xx,ypoly, 'm--', 'LineWidth',2)
plot(x,y, 'ro', 'MarkerSize',7, 'LineWidth'
axis([-0.2 7.2 0.5 8.5])

EXsplinesl.m

% Method 3: polynomial fit via built-in Matlab function polyfit.m

EXsplinesl.m

interp1.m
— direct calculation
original data

spline.m
{ = = = polynomial

O
o

i i i i i i i i
(o0} N~ © Te} < (e} 9\ —

10

o data
—LSQ
— polynomial
- = =spline

>

Bad choices made here?

Good choices made here?

Kutz (2013)

Aside: De-noising images

Jr'

PN g

-
4

i Afgpw ;

!... ? <) & 3
“\ "“ ;_’.l"'._-.—;ﬂ)'.: o)

o data

—LSQ

— polynomial
8 - - - spline
6> I . . ll . ” . .

> > De-noising (or “smoothing”) can arise in a

at variety of contexts....
i

0"
oL

Locally-weighted polynomial regression (loess)

> Basicidea: Do a ‘local’ regression (loess = ‘LOcal regrESSion’) to get a
smooth trend curve

- chiefly dictated by the data, not any ‘model’ assumptions

> Perform a least-squares fit to localized subsets of the data. Can also allow for
weighting to be factored in (just like the standard deviation we saw for linear
regression)

20| Aspidoscelis (10 ears)

b .
Lt
> Similar in spirit to splines, 15| o

just a bit more general
10+

Nsr

- [Reemphasis] This sort of situation is
very common in numerous scientific and
engineering applications!

Frequency (kHz)

Locally-weighted regression (loess)

20} Aspidoscelis (10 ears)

I .
> Has both: bt .
= Pros (e.g., model-independent, B s 8
determines interpolative trend 3,

from data directly) & o

%
= Cons (e.g., does not ‘model’ the <
data per se, can be
computationally
intensive/inefficient)

1 2 3 4 5 &
Frequency (kHz)

> Can also be sensitive to outliers, so be careful (be smart up front about how to
handle your data!)

‘Golden rules’ #1 — The computer only does what you tell it to do

EXloessl.m

oo

EXloessl.m ### 10.12.14
Determine loess fit to a set of randomly-generated noisy data

oo

oo

Note: Requires loess.m [hacked together by C. Shera]

clear; figure(l); clf;

User Inputs

N= 100; % # of points for fit (over interval [min(x) max(x)])
xR= [0 1]; % range of x-values

scaleN= 0.1; % scale factor for noise

alpha= 0.1; % loess fit parameter (between 0 and 1)

order= 1; % order of polynomial for fit

oo

x= linspace(min(xR),max(xR),N); % determine fit x-values

polyS= ceil(10*rand(1l)); % randomly determine polynomial order

Pv= 2*rand(polyS,1)-1; % polynomial coefficients

y= polyval(Pv,x)+ rand(l)*sin(2*pi*x)+ scaleN*randn(N,1l)'; % pseudo-random 'data’

xFit= linspace(min(xR),max(xR),N); % can 'resample' if desired (i.e., need not have xFit=x)
yFit= loess(x,y,xFit,alpha,order,[],1,0,0.1); % loess fit via external function

oo

% visualize

plot(x,y, ko'); hold on; grid on; > What type of polynomial is being used
plot (xFit,yFit, 'r-"); here?

xlabel('x"); ylabel('y');

legend('original data', 'loess trend');

loess.m

function y = loess (xi,yi,x,alpha,lambda,weights,robust,collapse,dither)

y = loess (xi, yi, ?x=unique(xi)?, ?alpha=0.1?, ?lambda=1?, ?weights=[]?,
?robust=0?, ?collapse=0?, ?dither=0?)

Returns the loess fit y(x) to data points yi(xi) having optional

weights (e.g., weights = 1/sigma_yi”2). The smoothing

parameter alpha (alpha<l) is the fraction of the total number

of data points to fit. Typically, alpha<<l (so that the

fit is *local*). Uses a polynomial fit of order lambda.

Note that the data (xi,yi) do NOT need to be pre-sorted by xi,

(but its a good idea to do so if you intend to plot the results!)

The robust option computes an iterated robust loess fit.
First, an initial (un-robust) loess fit is performed. The
weights are then modified (based on the residuals to reduce
the influence of outliers) and a new fit performed.

Ideally, the cycle of fitting and adjusting weights based on
residuals is iterated until the fit converges.

Here, the fit is iterated a total of robust times;

in practice robust=1 often suffices. If there are lots of
data points, a robust fit can take a long time.

The collapse option collapses all data points at the same

value of xi and replaces the multiple yi by their median value.

(We use the median not the mean in the hope that it'll be

less sensitive to outliers.) Collapsing helps maintain

the 'local' character of the fit in cases where many xi have

multiple corresponding yi.

(Note that the computation of the mean or median should take the weights
into account and new weights should be computed using the variance.

But we need to figure out what weights should be assigned to non-repeated
values.)

The dither option dithers the xi randomly by dither percent
using a Gaussian distribution. Dithering is an alternative
solution to the 'duplicate xi problem' addressed by collapsing.
If dither is set, collapse is unset.

Reference:
Visualizing Data, William S. Cleveland
Hobart Press, 1993, pg 100ff

00 00 00 o0 00 00 O° O° O° O° O° P P O° 00 O OO0 O° A° OO0 O° A° o0 O° O° o0 P O° O° AP % O° O° 00 O° A° O° o° d° o° o°

Hacked together by C.A. Shera

http://web.mit.edu/apg/

loess.m

function y = loess (xi,yi,x,alpha,lambda,weights,robust,collapse,dither) flag=0;
% y = loess (xi, yi, ?x=unique(xi)?, ?alpha=0.1?, ?lambda=1?, ?weights=[]?, for i = l:length (x)
% ?robust=0?, ?collapse=0?, ?dither=0?) $ Compute the tricube weighting functions...
% Points are weighted by their distance from x(i) using a
%% Hacked together by C.A. Shera % variable window defined so that the gth most distant point
% % has w=0. Except near the ends, the window will typically
. % be roughly symmetric about x(i). Note that when determining
}f (nargin < 3| isempty (x)), x = unique(xi); end; $ the gth most distant point, we count points at the same xi
if (nargin < 4 | isempty (alpha)), alpha = 0.1; end; % as one. This differs from Cleveland's description, but is
if (nargin < 5 | isempty (lambda)), lambda = 1; end; $ more robust (and sensible?) in certain pathological cases.
if (nargin < 6 | isempty (weights)), weights ones(size(yi)); end;
if (nargin < 7 | isempty (robust)), robust = 0; end; Delta = abs (xi-x(i));
if (nargin < 8 | isempty (collapse)),collapse = 0; end; Delta_g = unique (Delta); % sort array, removing duplicates
if (nargin < 9 | isempty (dither)), dither = 0; end;
. . % multiply in the tricube weighting...
if (dither), collapse=0; end w = weights .* tricube (Delta/Delta_g(q));
% collapse repeated values...
if (collapse) . . % Locate the points to fit...
[sxi,I,J] = unique (xi); fit me = find (w>0);
syi = zeros(size(sxi)); -
wgt = zeros(size(sx:})); % take care of various pathological cases...
for k = l:length(sxi) switch (length(fit_me))
avg_me = find (J==k); case 0
syi(k) = median (yi(avg_me)); % should use weights if flag== 0 warning ('loess: Empty window! Using NaN.'); end
wgt(k) = mean (weights(avg_me)); % coarse y(i) = NaN;
flag= 1;
L7 continue;
weights = wgt; case 1
end if flag== 0 warning ('loess: Single point in window! Skipping fit.'); end
. X y(i) = yi(fit_me);
% dither the xi... flag= 1;
if (dither 0) continue;
xi = xi .* (1 + dither*randn(size(xi))/100);
end otherwise
. lam = min(lambda,length(fit_me)-1);
n = length (xi); if (lam ~= lambda)

g = min (n, round (abs (alpha)*n)); 0 warning ('loess: Too few points in window! Reducing lambda.'); end

% do sanity control on the robust flag since
% we later use it to control the iteration...

robust = round (abs (robust)); % Do the fit...
. . . if (lam==1)
weights = abs (weights); % must be non-negative % MUCH faster than polyfitw in linear case
original weights = weights; % save for later [a,b] = linear fit (xi(fit_me),yi(fit_me),l./sqrt(w(fit_me)));
y(i) = a + b*x(i);
if (~robust) else
% allocate s:?me space for the fit... p = polyfitw (xi(fit_me),yi(fit_me),lam,w(fit_me));
y = zeros (size (x)); y(i) = polyval (p,x(i));
end end
: . end
% we dither the xi by a small random amount to prevent end
% there from being lots of repeated xi values, which can cause return
% havoc when trying to determine the g closest values...
% xi =xi .* (1 + le-6*randn(size(xi))); %
% iterate to obtain robust fits at the points xi... function T = tricube (u)
while (robust) u = abs (u);
robust = robust - 1; T = zeros (size (u));
) i = find (u<l);
% do a normal loess fit at points xi (not x) using the current weights T(i) = (l-u(i)."3)."3;
y = loess (xi,yi,xi,alpha,lambda,weights,0,collapse); return
% compute residuals from fit... %

res = yi - y;
function T = bisquare (u)

% Compute bisquare robustness weighting function using the residuals... u = abs (u);

% Outliers (points with large residuals) receive a weighting near zero. T = zeros (size (u));

mar = median (abs (res)); % median absolute residual i = find (u<l);

u = res / (6*mar); T(i) = (l-u(i).”2)."2;
return

% before iterating the fit, modify the original weights
% using the bisquare robustness weighting...
weights = original_weights .* bisquare (u);

end

y = zeros (size(x)); % allocation

% after this loop, robust is always zero...
% Loop over X (not xi) ...

http://web.mit.edu/apg/

EXloessl.m

alpha= 0.1; yFit= loess(x,y,xFit,alpha,1,[]1,1,0,0.1);

2 T T T T T T T T T
O original data ‘ ‘ ‘ ‘ ‘ ‘ ‘
loess trend ; ; ; ; ‘ ‘ ‘

0.4 | | | | | | | | |

alpha=

1.2

0.3

’

O

original data
loess trend

EXloessl.m

alpha= 0.05;

1.5

O

original data
loess trend

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EXloessl.m

Summary (regression)

l /] L lllllll l i . J

ey
@
o

]

Phase (degrees)
o
|

-180 —
l L] ’ L] L I B J ll L] L] L A
1 10 50
Frequency (kHz)

Starting point is some data, which you may want
to fit a specific function to or determine a trend

FIGURE 8.2
Chi-square hypersurface as a function of two parameters.

Regression can be linear or nonlinear, the latter
leading to some tricky computational approaches

1 1 1 1 1 L

-20 -10 10 20 30 40 50 60

Key quantity in ‘least squares’ analysis is 2 (“chi-
squared”), which you want to minimize

O original data
loess trend

0.4
0

Non-parametric regression (e.g., cubic splines, loess)
can be very useful for finding trends sans a ‘model’

Post-class exercises

>

What is the distinction (if any) between ‘interpolation’ and ‘curve fitting’?

How might you modify EXregression6.m (or myTestFunction2.m) such that the
fit to the micro-mechanical resonator steady-state phase is improved?

Modify the loess code to see how the trend varies for different order
polynomials. And what happens if you modify the other parameters (e.g.,
‘robust’)?

Modify the loess code to introduce a randomized uncertainty for each point
and use such for a ‘weighting’ in computation of the trend

EXfractall.m

Coming up next....

.1

