Computational Methods (PHYS 2030)

Instructors: Prof. Christopher Bergevin (cberge@yorku.ca)

Schedule: Lecture: MWF 11:30-12:30 (CLH M)

Website: http://www.yorku.ca/cberge/2030W2018.html
Fourier analysis

- Deep history throughout mathematics, physics, engineering, biology,

- Backbone of modern signal processing and linear systems theory

- Lays at foundation of many modern methodologies in medical imaging (e.g., MRI, CT scans)

- Builds off the basic idea of a *Taylor series* (which posits we can describe a function as an infinite series of polynomials)

Basic idea: Represent ‘signal’ as a sum of sinusoids

Note: We focus on 1-D here for clarity, but these ideas generalize to higher dimensions (e.g., 2-D for images)
Motivation: Medical Imaging (e.g., NMR/MRI)
Motivation: Medical Imaging (e.g., NMR/MRI)

→ A key foundation for imaging is a Fourier transform ("k-space")
Motivation: Medical Imaging (e.g., NMR/MRI)
Motivation: Medical Imaging (e.g., NMR/MRI)
Motivation: Speech

Stevens (2000)
Motivation: Speech

Snapshots of vibrating vocal folds

Simple two-mass model for the vocal folds

→ Vocal folds behaves like a harmonic oscillator (HO)!

Reminder: We can describe HO in terms of ‘spectral’ response

Stevens (2000)
Motivation: Speech

Key idea:
Spectrum
\(\rightarrow \) x-axis is frequency [Hz]

\(\rightarrow \) Vibrating vocal folds give off ‘buzzy’ sound due to harmonics

\(\rightarrow \) Males have lower ‘fundamental’ (due to more massive vocal folds)

Stevens (2000)
Motivation: Speech

Complex acoustic process is boiled down to a relatively simple/tractable framework of ‘sources’ and tubes!

Stevens (2000)
Motivation: Speech

Vibrating vocal folds make ‘broadband’ sound

Vocal tract shapes that sound

Resulting ‘shape’ emphasizes features which we then pick up with our ear (e.g., formants of vowels)

→ But what does it mean for everything to be a function of frequency?

Stevens (2000)
Aside: Recording sound

Note: Many freeware programs exist for recording sound (Matlab lets you do it on PCs)
Aside: Recording sound

- Several basic ingredients:
 - sound source
 - microphone
 - A/D converter (e.g., laptop, Arduino)
 - software (e.g., Matlab, C, LabView,)

- Think about physically what each ‘step’ does (e.g., microphone transduces by either inductive or capacitive changes, thereby creating an electric current)

- Sound (i.e., pressure fluctuations) are thereby converted to voltage signals

- For a ‘mono’ signal, this is a 1-D system (i.e., voltage is a function of time)

- A continuous signal when digitized becomes discrete (i.e., ‘sampled’)

Aside: Discrete vs Continuous

Start w/ some familiar ideas:

- Quantum vs. Classical mechanics
- Wave-particle duality
- Statistical mechanics

1. We ‘live’ in a world that is simultaneously discrete and continuous

2. Such a reality flavors how we ‘measure’ anything
Aside: Sampling

‘Snapshots’ (i.e., sampling)

Very short snapshots’ → Delta functions
Aside: Sampling

Typically when we measure a signal, we measure a discretized version of such (which is both similar and different!)
Aside: Sampling

- Note that there is some sort of timing associated with our sampling

- That is, there is a *sampling rate* associated with converting from analog to digital

 ex. compact discs use a sample rate (SR) of 44.1 kHz

- The faster we sample, the more information we capture (to a point)
Aside: Aliasing

- Be careful that your sample rate is not too low...

→ “Aliasing”
Key idea: Fourier transform

- Allows one to go from a time domain description (e.g., our recorded mic signal) to a spectral description (i.e., what frequency components make up that signal)

- One axis is time, the other is frequency
- These two are fundamentally tied together
We are going to perform a specific type of spectral analysis called the ‘Short Time Fourier Transform’ (STFT) to make what is called a spectrogram.
function y = makeSpectrogram(file)
% ### EXspectrogram.m ### 10.27.14
% Reads in wav file created via separate program (e.g., Audacity) and makes a spectrogram
% NOTE: make sure sample rate specified here matches that used when recording the data!

% -------
P.SR= 44100; % SR data collected at [Hz]
P.windowL= 2048; % length of window segment for FFT {2048}
P.overlap= 0.8; % fractional overlap between window, from 0 to 1 {0.8}
P.maxF= 8000; % max. freq. for spectrogram [Hz] {8000}
fileN= './spectrogram2030.jpg'; % filename to save image to
% -------
pts= round(P.windowL*P.overlap); % convert fractional overlap to # of points
disp(sprintf('Assumed sample rate = %g kHz', P.SR/1000));
A= wavread(file);
spectrogram(A,blackman(P.windowL),pts,P.windowL,P.SR,'yaxis'); % create spectrogram and plot (via
built-in function)
axis([0 size(A,1)/P.SR 0 P.maxF])
colorbar

% ------
% save picture to file as a jpg w/ a user-specified resolution
REZ= '-r180'; % resolution for exporting colormaps to jpg
print('-djepg',REZ,[fileN]);

% NOTE: to play back the audio, type:
% > sound(A,SR)
% where SR is the appropriate sample rate (e.g., fiddle with if you want to
% change the pitch)

% NOTE: To save an array (A) to .wav file, type:
% > wavwrite(A,SR,16,filename);
Figure 3.1 Sketches indicating components of the output spectrum $|p_r(f)|$ for a vowel and a fricative consonant. The output spectrum is the product of a source spectrum $S(f)$, a transfer function $T(f)$, and a radiation characteristic $R(f)$. The source spectra are similar to those derived in figures 2.10 and 2.33 in chapter 2. For the periodic source, $S(f)$ represents the amplitudes of spectral components; for the noise source, $S(f)$ is amplitude in a specified bandwidth. See text.
"Physics 2030 Computational methods for physicists and engineers"
The ear’s main job is to do this sort of spectral decomposition!
As an example, Fourier transforms are not limited to 1-D

Requires several 'sub' functions
Note: Only $\frac{1}{2}$ of the information is shown on the right (amplitude only; phase not shown)
‘Low-pass filtered’ version of the image
Intuitive connection back to Taylor series:

\[y(x_1 + \Delta x) \approx y(x_1) + \sum_{n=1}^{N} \frac{1}{n!} \left. \frac{d^n y}{dx^n} \right|_{x_1} (\Delta x)^n. \quad (D.2) \]

\[f(x) = f(x_o) + f'(x_o)(x - x_o) + \frac{f''(x_o)}{2!}(x - x_o)^2 + \cdots + \frac{f^{(n)}(x_o)}{n!}(x - x_o)^n + \cdots \]

\[= \sum_{n=0}^{\infty} \frac{f^{(n)}(x_o)}{n!}(x - x_o)^n \]

Taylor series \rightarrow Expand as a (infinite) sum of polynomials

Different Idea: Fourier series \rightarrow Expand as a (infinite) sum of sinusoids
“The exponential function e^x (in blue), and the sum of the first $n+1$ terms of its Taylor series at 0 (in red).”
“Animation of the additive synthesis of a square wave with an increasing number of harmonics.”

“The six arrows represent the first six terms of the Fourier series of a square wave. The two circles at the bottom represent the exact square wave (blue) and its Fourier-series approximation (purple).”
Fourier series

\[f(t) = a_o + a_1 \sin(\omega t) + b_1 \cos(\omega t) + a_2 \sin(2\omega t) + b_2 \cos(2\omega t) + a_3 \sin(3\omega t) + b_3 \cos(3\omega t) + \cdots \]

\[= A_0 + A_1 \sin(\omega t + \phi_1) + A_2 \sin(2\omega t + \phi_2) + A_3 \sin(3\omega t + \phi_3) + \cdots \]

\[= \sum_{n=0}^{\infty} A_n \sin(n\omega t + \phi_n) \]

\[= \sum_{n=0}^{\infty} B_n e^{i n \omega t} \quad \text{where } B_n \in \mathbb{C}, \ i = \sqrt{-1} \]

Complex #s are much more compact and easier to deal with
Summary