Computational Methods (PHYS 2030)

Instructors: Prof. Christopher Bergevin (cberge@yorku.ca)

Schedule: Lecture: MWF 11:30-12:30 (CLH M)

Website: http://www.yorku.ca/cberge/2030W2018.html

York University
Winter 2018
Lecture x



Simply match up the pictures to the words. There's a

particular sort of person that would find this puzzle very
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> ‘Photo mosaics’ use images as an
underlying set of ‘basis functions’

> Note that we could just as easily
choose a different set of basis
images....

... and it’s not too hard to
imagine that some choices
might be better than others!

(e o] (e o]
a .
f(t) = —22 + n2=1 a, cosnt + E b, sinnt

n=1

—> Similar idea underlies the notion of
Fourier analysis, the choice of basis
functions being sinusoids

http://cornejo-sanchez.deviantart.com/art/Einstein-Mosaic-227306670



Sinusoids as basis functions

i TOmmn, mM#DO0,
/ sinmtsinntdt={ LT 7

- 0, m = 0,
. . . " Tomm, m#0,
> Sinusoids make a good choice for cosmt cosnt dt =
. . —n 2m, m=n=0,

basis functions, as they are

{ 7’ w

complete’ in that they are / sinmtcosntdt = 0, all integral m and n.
orthogonal to one another over the —n

interval [0,27]
- The sum of the product over the interval is zero for disparate
frequencies (i.e., they cancel one another out!)

- Similar idea as orthogonal unit vectors in coordinate space

Fourier coefficients

oo oo
a .
f(t) = -29 + nE=1 a, cos nt + E b, sin nt

1 o™
n=1 an = — f(t) cosnt dt,
> This provides a ‘recipe’ for figuring out
the appropriate weighting for each term 1 [ .
b, = - f(t) sinnt dt.

-

Devries (1994)



Reminder

aj(t) — Al sin(27rf1t + ¢1)
-+ A2 SiIl(27Tf2t -+ ¢2)

- Changing (relative) phase
affects summation

- Changing (relative) amplitudes
affects summation

fi=1 f,=1.1
A,=1, 4,=1
6 =12, $,=0

fi=1, f,=1.1
A,=2, 4,=1
¢,=0, $,=0




Speech & Vowels: AEIT O U

Pressure [arb]

0.8

0.6

0.4

0.2

time waveform

HARD
PALATE

LIPS

‘time waveform’
recorded from mic |

Time [s]

Frequency (Hz)

8000
7ooo§
eooofg
50003; :
40002?
300055 :
2000%% ‘

1000 {48

EXspectrogram.m

Stevens (2000)



Speech & Vowels: AEI O U (R T
> Let’s just focus on the initial vowel A (/al/): i
:
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Speech & Vowels: AEIT O U

> Let’s just focus on the initial vowel A (/al/):

0.21-

0.1

6000

5000

3000

Frequency (Hz)

2000

1000

0.554 0.556 0.558 0.56 0.562 0.564 0.566 0.568 0.57 0.572

> Speech is just one of *many* types of signals that can be very efficiently be

| | | | | | | | | ] o=

Time [s]

described in terms of the summation of sinusoids

Short Time Fourier Transform (STFT)

(we’ll come back to what specifically this is)




Fourier transforms

We now define g(w) to be the Fourier transform of f(¢),

FIF(t) = gw) = / F(t)e=it dt,

and f(t) to be the inverse transform of g(w),

o) = 10) = = / 9(w)e“ du.

> Seemingly abstract/simple idea has vast
implications in terms of how we encode and
decipher information (e.g., signal processing) as
well as mathematical methods in physics and
linear systems theory

Devries (1994)
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Figure 2.17 (a) Growing sinusoidal signal x(z) = Ce* cos (wot + ), r > 0; Figure 2.32 (a) Growing discrete-time sinusoidal signal; (b) decaying discrete-time sinusoid.
(b) decaying sinusoid x(¢) = Cer* cos (wot -+ 6), r < 0.

Continuous signal (analog) Discretized signal (digital)

Question: Does Fourier analysis ‘care’ whether things are continuous or discrete?

Yes & no (we’ll come back to this a bit later)

Oppenheim & Willsky



FFT (Fast Fourier Transform)

An Algorithm for the Machine Calculation of Complex Fourier Series
Author(s): Tames W. Cooley and John W. Tukey
Source: Mathematics of Computation, Vol. 19, No. 90 (Apr., 1965), pp. 297-301

> Means to efficiently deal with
discrete Fourier transforms (e.g.,
a digitally sampled waveform)

An Algorithm for the Machine Calculation of
Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2™ factorial ex-
periment was introduced by Yates and is widely known by his name. The generaliza-
tion to 3™ was given by Box et al. [1]. Good [2] generalized these methods and gave
elegant algorithms for which one class of applications is the calculation of Fourier
series. In their full generality, Good’s methods are applicable to certain problems in
which one must multiply an N-vector by an N X N matrix which can be factored
into m sparse matrices, where m is proportional to log N. This results in.a procedure
requiring & number of operations proportional to N log N rather than N*. These
methods are applied here to the calculation of complex Fourier series. They are
useful in situations where the number of data points is, or can be chosen to be, a
highly composite number. The algorithm is here derived and presented in a rather
different form. Attention is given to the choice of N. It is also shown how special
advantage can be obtained in the use of a binary computer with N = 2™ and how
the entire calculation can be performed within the array of N data storage locations
used for the given Fourier coefficients.

Consider the problem of calculating the complex Fourier series

N-—1

(1) X(j) = AR W j=0,1,---,N—1,

where the given Fourier coefficients A (k) are complex and W is the principal
Nth root of unity,

(2 ) W = eztl'/N'

A straightforward calculation using (1) would require N* operations where “opera-
tion” means, as it will throughout this note, a complex multiplication followed by a
complex addition.

The algorithm described here iterates on the array of given complex Fourier
amplitudes and yields the result in less than 2N log. N operations without requiring
more data storage than is required for the given array A. To derive the algorithm,
suppose N is a composite, i.e., N = ri-ra. Then let the indices in (1) be expressed

(3) Jj=hn+jo, Jo=0,1, -, —1, =01, m—1
k= k2 + ke, ko=0,1,"‘,7'2’—1, ky =01, -+, — 1L

Then, one can write
(4) X(juygo) = 2 2 Ak, ko)- W™,
0 1

Received August 17, 1964. Research in part at Princeton University under the sponsorship
of the Army Research Office (Durham). The authors wish to thank Richard Garwin for his
essential role in communication and encouragement.



FFT (Fast Fourier Transform)

The Fourier transform is actually relatively easy to compute via the FFT

The calculation of the Fourier coefficients using our equa-
tions involves /N evaluations of the sine or cosine, /N mul-
tiplications, and N additions for each coeflicient. There
are N coefficients, so that there must be N? evaluations

of the sines and cosines, which uses a lot of computer
time. Cooley and Tukey (1965) showed that it is possible
to group the data in such a way that the number of mul-
tiplications is about (N/2)log, N instead of N? and the
sines and cosines need to be evaluated only once, a tech-
nique known as the Fast Fourier Transform (FFT). For
example, for 1024 = 2!° data points, N? = 1048576,
while (N/2)logo N = (512)(10) = 5120. This speeds
up the calculation by a factor of 204.

Hobbie & Roth (2007)



$ ### EXbuildImpulse.m ### 11.03.14

% Code to visually build up a signal by successively adding higher and
% higher frequency terms from corresponding FFT

clear; clf;

SR= 44100; % sample rate [Hz]
Npoints= 8192; %
% [time window will be the same length]
INDXon= 1000; % index at which click turns 'on' (i.e., go from 0 to
INDXoff= 1001; % index at which click turns 'off' (i.e., go from 1 to

dt= 1/SR; & spacing of time steps

freq= [0:Npoints/2]; % create a freq. array (for FFT bin labeling)
freq= SR*freq./Npoints;

t=[0:1/SR: (Npoints-1)/SR]; % create an appropriate array of time points
% build signal

clktempl= zeros(1l,Npoints); clktemp2= ones(1l,INDXoff-INDXon);

signal= [clktempl(1l:INDXon-1) clktemp2 clktempl(INDXoff:end)];

% Fhkkkkk*k

% plot time waveform of signal
if 1==
figure(l); clf; plot(t*1000,signal, 'ko-', 'MarkerSize',5)

grid on; hold on; xlabel('Time [ms]'); ylabel('Signal'); title('Time Waveform')

end

% *kkkkkkk

% now compute/plot FFT of the signal

sigSPEC= rfft(signal);

% MAGNITUDE

figure(2); clf;

subplot(211); plot(freq/1000,db(sigSPEC), 'ko-", 'MarkerSize',3)
hold on; grid on; ylabel('Magnitude [dB]'); title('Spectrum')
% PHASE

subplot(212); plot(freq/1000,cycs(sigSPEC), 'ko-', 'MarkerSize',3)
xlabel( 'Frequency [kHz]'); ylabel('Phase [cycles]'); grid on;

Y F*kkkkk*k

% now make animation of click getting built up, using the info from the FFT

sum= zeros(l,numel(t)); % (initial) array for reconstructed waveform
figure(3); clf;
for nn=1l:numel(freq)

length of fft window (# of points) [should ideally be 2"N]

1)
0)

sum= sum+ abs(sigSPEC(nn))*cos(2*pi*freq(nn)*t + angle(sigSPEC(nn)));

plot(t,sum); xlabel('Time [s]');
legend([ 'Highest freg= ',num2str(freq(nn)/1000),"' kHz'])
pause(2/(nn))

end

EXbuildimpulse.m



EXbuildimpulse.m
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% ### EXspecREP3.m ### 10.29.14

% Example code to just fiddle with basics of discrete FFTs and connections
% back to common real-valued time waveforms

% --> Demonstrates several useful concepts such as 'quantizing' the frequency
% Requires: rfft.m, irfft.m, cycs.m, db.m, cyc.m

% —mmmaa

% Stimulus Type Legend

% stimT= 0 - non-quantized sinusoid

% stimT= 1 - quantized sinusoid

% stimT= 2 - one quantized sinusoid, one un-quantized sinusoid

% stimT= 3 - two quantized sinusoids

% stimT= 4 - click I.e., an impulse)

% stimT= 5 - noise (uniform in time)

% stimT= 6 - chirp (flat mag.)

% stimT= 7 - noise (Gaussian; flat spectrum, random phase)

% stimT= 8 - exponentially decaying sinusoid (i.e., HO impulse response)

clear; clf;
%
SR= 44100;

Npoints= 8192;

% sample rate [Hz]
% length of fft window (# of points) [should ideally be 2°"N]
% [time window will be the same length]
% Stimulus Type (see legend above)
f= 2580.0; % Frequency (for waveforms w/ tones) [Hz]
ratio= 1.22; % specify f2/f2 ratio (for waveforms w/ two tones)
% Note: Other stimulus parameters can be changed below
%
dt= 1/SR; % spacing of time steps
freq= [0:Npoints/2]; % create a freq. array (for FFT bin labeling)
freq= SR*freq./Npoints;
% quantize the freq. (so to have an integral # of cycles in time window)
df = SR/Npoints;
£fQ= ceil(f/df)*df; % quantized natural freq.
t=[0:1/SR: (Npoints-1)/SR]; % create an array of time points, Npoints long
F ————
% compute stimulus
if stimT==0 % non-quantized sinusoid
signal= cos(2*pi*f*t);
disp(sprintf(' \n *Stimulus* - (non-quantized) sinusoid, f = %g Hz \n', f));
disp(sprintf( 'specified freq. = %g Hz', f));
elseif stimT== % quantized sinusoid
signal= cos(2*pi*fQ*t);
disp(sprintf(' \n *Stimulus* - quantized sinusoid, £ = %g Hz \n', £Q));
disp(sprintf( 'specified freq. = %g Hz', f));
disp(sprintf('quantized freq. = %g Hz', £Q));
elseif stimT== % one quantized sinusoid, one un-quantized sinusoid
signal= cos(2*pi*fQ*t) + cos(2*pi*ratio*fQ*t);
disp(sprintf(' \n *Stimulus* - two sinusoids (one quantized, one not) \n'));
elseif stimT==3 % two quantized sinusoids
£Q2= ceil(ratio*f/df)*df;
signal= cos(2*pi*fQ*t) + cos(2*pi*fQ2*t);
disp(sprintf(' \n *Stimulus* - two sinusoids (both quantized) \n'));
elseif stimT== % click
CLKon= 1000; % index at which click turns 'on' (starts at 1)
CLKoff= 1001; % index at which click turns 'off'
clktempl= zeros(1l,Npoints);
clktemp2= ones(1l,CLKoff-CLKon);
signal= [clktempl(1l:CLKon-1) clktemp2 clktempl(CLKoff:end)];
disp(sprintf(' \n *Stimulus* - Click \n'));
elseif stimT==5 % noise (flat)
signal= rand(1l,Npoints);
disp(sprintf(' \n *Stimulus* - Noisel \n'));
elseif stimT==6 % chirp (flat)
£1s= 2000.0; % if a chirp (stimT=2) starting freq. [Hz] [freq. swept linearly w/ time]
f1E= 4000.0; % ending freq. (energy usually extends twice this far out)
£1S0= ceil(f1s/df)*df; %quantize the start/end fregs. (necessary?)
£1EQ= ceil (£1E/df)*df;
% LINEAR sweep rate
£SWP= £1SQ + (£f1EQ-£1SQ)*(SR/Npoints)*t;
signal = sin(2*pi*fSWP.*t)';
disp(sprintf(' \n *Stimulus* - Chirp \n'));

stimT= 8;

EXspecREP3.m

elseif stimT== % noise (Gaussian)
Asize=Npoints/2 +1;
% create array of complex numbers w/ random phase and unit magnitude
for n=1:Asize
theta= rand*2*pi;
N2 (n)= exp(i*theta);
end
N2=N2';
% now take the inverse FFT of that using Chris' irfft.m code
tNoise=irfft(N2);
% scale it down so #s are between -1 and 1 (i.e. normalize)
if (abs(min(tNoise)) > max(tNoise))
tNoise= tNoise/abs(min(tNoise));
else
tNoise= tNoise/max(tNoise);
end
signal= tNoise;
disp(sprintf(' \n *Noise* - Gaussian, flat-spectrum \n'));
elseif stimT==8 % exponentially decaying cos
alpha= 500;
signal= exp(-alpha*t).*sin(2*pi*fQ*t);
disp(sprintf(' \n *Exponentially decaying (quantized) sinusoid* \n'));
end

%
g kkkkkkk

figure(l); clf % plot time waveform of signal
plot(t*1000,signal, 'k.-", 'MarkersSize',5); grid on; hold on;
xlabel('Time [ms]'); ylabel('Signal'); title('Time Waveform')
g KkEkkkKkKk

% now plot rfft of the signal

% NOTE: rfft just takes 1/2 of fft.m output and nomalizes
sigSPEC= rfft(signal);

figure(2); clf; % MAGNITUDE

subplot(211)
plot(freq/1000,db(sigSPEC), 'ko-', 'MarkerSize',3)

hold on; grid on;

ylabel( 'Magnitude [dB]")

title( 'Spectrum')

subplot(212) % PHASE
plot(freq/1000,cycs(sigSPEC), 'ko-', 'MarkerSize',3)
xlabel('Frequency [kHz]'); ylabel('Phase [cycles]'); grid on;

% play the stimuli as an output sound?
if (1==1), sound(signal,SR); end

% compute inverse Fourier transform and plot?
if 1==
figure(1l);
signalINV= irfft(sigSPEC);
plot(t*1000,signalINV, 'rx', 'MarkerSize',4)
legend( 'Original waveform', 'Inverse transformed')
end



Signal

Fourier transforms of basic (1-D) waveforms EXspecREP3.m

SR= 44100; % sample rate [Hz]
stimT= 0 - non-quantized sinusoid Npoints= 8192; % length of fft window
Time domain Spectral domain
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Note: The phase is ‘unwrapped’
in all the spectral plots

> Magnitude shows a peak at the sinusoid’s frequency



Signal

Fourier transforms of basic (1-D) waveforms

0.5
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stimT= 3 - two quantized sinusoids

Time domain

Time Waveform
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EXspecREP3.m
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> Magnitude shows two peaks (note the ‘beating’ in the time domain)



Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 4 - click (i.e., an impulse)

Time domain

Spectral domain

Time Waveform Spectrum
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Click has a flat magnitude (This is also a good place to mention the concept of a ‘group delay’)



Fourier transforms of basic (1-D) waveforms

stimT= 5 - noise (uniform distribution)

Time domain Spectral domain

Time Waveform

Spectrum

EXspecREP3.m
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> Magnitude is flat-ish (on log scale), but actually noisy. Phase is noisy too.




Fourier transforms of basic (1-D) waveforms

0.8

EXspecREP3.m

> Magnitude is flat just like an impulse (i.e., flat), but the phase is random

stimT= 7 - noise (Gaussian distribution)
Time domain Spectral domain
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Fourier transforms of basic (1-D) waveforms

Impulse Noise

Time Waveform
T T T

Time Waveform
T T

Signal

Time domain
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- Remarkable that the magnitudes are identical (more or less)
between two signals with such different properties. The key
difference here is the phase: Timing is a critical piece of the puzzle!
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Signal

Fourier transforms of basic (1-D) waveforms

stimT= 6 - chirp (flat mag.)

Time domain
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Hard to see on this timescale, but frequency is changing
(increasing) with time
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Signal

Fourier transforms of basic (1-D) waveforms
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stimT= 8 - exponentially decaying sinusoid

Time domain

Time Waveform
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» This seems to look familiar....
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sign

Magnitude [dB]

Phase [cycles]

Connection back to.... ... the harmonic oscillator!
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> The steady-state response of the sinusoidally-driven
harmonic harmonic oscillator acts like a band-pass filter

> Distinction between steady-state response & impulse response
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Post-class exercises

> Write a simple Matlab script that creates two sinusoids, adds them together,
then visualizes the resulting waveform. Explore how does the ‘beating pattern’
depends upon the relative frequencies, phases, and/or amplitudes.

> Similar to above, try adding three sinusoids together and observe the variety of
effects you can get by changing the relative properties.

> Fiddle around with EXbuildImpulse.mand EXspecREP3.m to get a feel

for how different time waveforms have different spectral representations and
vice versa

> Using EXbuildImpulse.m, determine the relationship between the
impulse, the phase, and the ‘group delay’

» Consider the difference between fft.m & e e ——
rfft.m, and consider how such relates to '
the bottom spectral plot shown here

..................







