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http://cornejo-sanchez.deviantart.com/art/Einstein-Mosaic-227306670

Ø ‘Photo	mosaics’	use	images	as	an	
underlying	set	of	‘basis	functions’

Ø Note	that	we	could	just	as	easily	
choose	a	different	set	of	basis	
images....

...	and	it’s	not	too	hard	to	
imagine	that	some	choices	
might	be	better	than	others!

à Similar	idea	underlies	the	notion	of	
Fourier	analysis,	the	choice	of	basis	
functions	being	sinusoids



Sinusoids as basis functions

Devries	(1994)

Ø Sinusoids	make	a	good	choice	for	
basis	functions,	as	they	are	
‘complete’	in	that	they	are	
orthogonal	to	one	another	over	the	
interval	[0,2p]	

Fourier	coefficients

Ø This	provides	a	‘recipe’	for	figuring	out	
the	appropriate	weighting	for	each	term

à The	sum	of	the	product	over	the	interval	is	zero	for	disparate	
frequencies	(i.e.,	they	cancel	one	another	out!)

à Similar	idea	as	orthogonal	unit	vectors	in	coordinate	space



f1=1, f2=1.1
A1=1, A2=1
f1=0, f2=0

f1=1, f2=1.1
A1=1, A2=1
f1=p/2, f2=0

f1=1, f2=1.1
A1=2, A2=1
f1=0, f2=0

à Changing (relative) phase  
affects summation

à Changing (relative) amplitudes  
affects summation

Reminder



EXspectrogram.mSpeech & Vowels: A E I O U

Stevens	(2000)
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recorded from mic



Speech & Vowels: A E I O U

Ø Let’s	just	focus	on	the	initial	vowel	A	(/aI/):	
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Just	a	sum	of	a	
bunch	of	sinusoids?



Speech & Vowels: A E I O U

Ø Let’s	just	focus	on	the	initial	vowel	A	(/aI/):	
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Ø Speech	is	just	one	of	*many*	types	of	signals	that	can	be	very	efficiently	be	
described	in	terms	of	the	summation	of	sinusoids	

Short	Time	Fourier	Transform	(STFT)
(we’ll	come	back	to	what	specifically	this	is)



Fourier transforms

Devries	(1994)

Ø Seemingly	abstract/simple	idea	has	vast	
implications	in	terms	of	how	we	encode	and	
decipher	information	(e.g.,	signal	processing)	as	
well	as	mathematical	methods	in	physics	and	
linear	systems	theory



Oppenheim	&	Willsky

Continuous	signal	(analog) Discretized	signal	(digital)

Question:	Does	Fourier	analysis	‘care’	whether	things	are	continuous	or	discrete?

Yes	&	no (we’ll	come	back	to	this	a	bit	later)



FFT (Fast Fourier Transform)

Ø Means to efficiently deal with 
discrete Fourier transforms (e.g., 
a digitally sampled waveform)



FFT (Fast Fourier Transform)

Hobbie & Roth (2007)

The	Fourier	transform	is	actually	relatively	easy	to	compute	via	the	FFT



EXbuildImpulse.m
% ### EXbuildImpulse.m ###       11.03.14
% Code to visually build up a signal by successively adding higher and
% higher frequency terms from corresponding FFT
clear; clf;
% --------------------------------
SR= 44100;         % sample rate [Hz]
Npoints= 8192;     % length of fft window (# of points) [should ideally be 2^N]

% [time window will be the same length]
INDXon= 1000;     % index at which click turns 'on' (i.e., go from 0 to 1)
INDXoff= 1001;   % index at which click turns 'off' (i.e., go from 1 to 0)
% --------------------------------

dt= 1/SR;  % spacing of time steps
freq= [0:Npoints/2];    % create a freq. array (for FFT bin labeling)
freq= SR*freq./Npoints;
t=[0:1/SR:(Npoints-1)/SR]; % create an appropriate array of time points
% build signal
clktemp1= zeros(1,Npoints); clktemp2= ones(1,INDXoff-INDXon);
signal= [clktemp1(1:INDXon-1) clktemp2 clktemp1(INDXoff:end)];
% ------------------------------
% *******
% plot time waveform of signal
if 1==1

figure(1); clf; plot(t*1000,signal,'ko-','MarkerSize',5)
grid on; hold on; xlabel('Time [ms]'); ylabel('Signal'); title('Time Waveform')

end
% *******
% now compute/plot FFT of the signal
sigSPEC= rfft(signal);
% MAGNITUDE
figure(2); clf; 
subplot(211); plot(freq/1000,db(sigSPEC),'ko-','MarkerSize',3)
hold on; grid on; ylabel('Magnitude [dB]'); title('Spectrum')
% PHASE
subplot(212); plot(freq/1000,cycs(sigSPEC),'ko-','MarkerSize',3)
xlabel('Frequency [kHz]'); ylabel('Phase [cycles]'); grid on;
% *******
% now make animation of click getting built up, using the info from the FFT
sum= zeros(1,numel(t)); % (initial) array for reconstructed waveform
figure(3); clf;
for nn=1:numel(freq)

sum= sum+ abs(sigSPEC(nn))*cos(2*pi*freq(nn)*t + angle(sigSPEC(nn)));
plot(t,sum); xlabel('Time [s]');
legend(['Highest freq= ',num2str(freq(nn)/1000),' kHz'])
pause(2/(nn))

end



EXbuildImpulse.m
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(i.e.,	a	delta	function)

Spectral	representation	
has	flat	amplitude	and	a	
‘group	delay’	
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Reconstruct	waveform	by	
adding	sinusoids	(only	lowest	
frequency	here)
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Now	the	first	15	terms	
are	included

à Eventually	all	the	
sinusoids	add	up	such	
that	things	cancel	out	
everywhere	except	at	
the	point	of	the	
impulse!



EXspecREP3.m% ### EXspecREP3.m ###       10.29.14
% Example code to just fiddle with basics of discrete FFTs and connections
% back to common real-valued time waveforms 
% --> Demonstrates several useful concepts such as 'quantizing' the frequency
% Requires: rfft.m, irfft.m, cycs.m, db.m, cyc.m
% ------
% Stimulus Type Legend
% stimT= 0 - non-quantized sinusoid
% stimT= 1 - quantized sinusoid
% stimT= 2 - one quantized sinusoid, one un-quantized sinusoid
% stimT= 3 - two quantized sinusoids
% stimT= 4 - click I.e., an impulse)
% stimT= 5 - noise (uniform in time)
% stimT= 6 - chirp (flat mag.)
% stimT= 7 - noise (Gaussian; flat spectrum, random phase)
% stimT= 8 - exponentially decaying sinusoid (i.e., HO impulse response)

clear; clf;
% --------------------------------
SR= 44100;         % sample rate [Hz]
Npoints= 8192;     % length of fft window (# of points) [should ideally be 2^N]

% [time window will be the same length]
stimT= 8;   % Stimulus Type (see legend above)
f= 2580.0;         % Frequency (for waveforms w/ tones) [Hz]
ratio= 1.22;    % specify f2/f2 ratio (for waveforms w/ two tones)
% Note: Other stimulus parameters can be changed below
% --------------------------------
dt= 1/SR;  % spacing of time steps
freq= [0:Npoints/2];    % create a freq. array (for FFT bin labeling)
freq= SR*freq./Npoints;
% quantize the freq. (so to have an integral # of cycles in time window)
df = SR/Npoints;
fQ= ceil(f/df)*df;   % quantized natural freq.
t=[0:1/SR:(Npoints-1)/SR];  % create an array of time points, Npoints long
% ----
% compute stimulus
if stimT==0 % non-quantized sinusoid

signal= cos(2*pi*f*t);
disp(sprintf(' \n *Stimulus* - (non-quantized) sinusoid, f = %g Hz \n', f));
disp(sprintf('specified freq. = %g Hz', f));

elseif stimT==1     % quantized sinusoid
signal= cos(2*pi*fQ*t);
disp(sprintf(' \n *Stimulus* - quantized sinusoid, f = %g Hz \n', fQ));
disp(sprintf('specified freq. = %g Hz', f));
disp(sprintf('quantized freq. = %g Hz', fQ));

elseif stimT==2     % one quantized sinusoid, one un-quantized sinusoid
signal= cos(2*pi*fQ*t) + cos(2*pi*ratio*fQ*t);
disp(sprintf(' \n *Stimulus* - two sinusoids (one quantized, one not) \n'));

elseif stimT==3     % two quantized sinusoids
fQ2= ceil(ratio*f/df)*df;
signal= cos(2*pi*fQ*t) + cos(2*pi*fQ2*t);
disp(sprintf(' \n *Stimulus* - two sinusoids (both quantized) \n'));

elseif stimT==4     % click
CLKon= 1000;     % index at which click turns 'on' (starts at 1)
CLKoff= 1001;   % index at which click turns 'off'
clktemp1= zeros(1,Npoints);
clktemp2= ones(1,CLKoff-CLKon);
signal= [clktemp1(1:CLKon-1) clktemp2 clktemp1(CLKoff:end)];
disp(sprintf(' \n *Stimulus* - Click \n'));

elseif stimT==5     % noise (flat)
signal= rand(1,Npoints);
disp(sprintf(' \n *Stimulus* - Noise1 \n'));

elseif stimT==6     % chirp (flat)
f1S= 2000.0;     % if a chirp (stimT=2) starting freq. [Hz] [freq. swept linearly w/ time]
f1E= 4000.0;   % ending freq.  (energy usually extends twice this far out)
f1SQ= ceil(f1S/df)*df;      %quantize the start/end freqs. (necessary?)
f1EQ= ceil(f1E/df)*df;
% LINEAR sweep rate
fSWP= f1SQ + (f1EQ-f1SQ)*(SR/Npoints)*t;
signal = sin(2*pi*fSWP.*t)';
disp(sprintf(' \n *Stimulus* - Chirp \n'));

elseif stimT==7     % noise (Gaussian)
Asize=Npoints/2 +1;
% create array of complex numbers w/ random phase and unit magnitude
for n=1:Asize

theta= rand*2*pi;
N2(n)= exp(i*theta);

end
N2=N2';
% now take the inverse FFT of that using Chris' irfft.m code
tNoise=irfft(N2);
% scale it down so #s are between -1 and 1 (i.e. normalize)
if (abs(min(tNoise)) > max(tNoise))

tNoise= tNoise/abs(min(tNoise));
else

tNoise= tNoise/max(tNoise);
end
signal= tNoise;
disp(sprintf(' \n *Noise* - Gaussian, flat-spectrum \n'));

elseif stimT==8 % exponentially decaying cos
alpha= 500;
signal= exp(-alpha*t).*sin(2*pi*fQ*t);
disp(sprintf(' \n *Exponentially decaying (quantized) sinusoid*  \n'));

end

% ------------------------------
% *******
figure(1); clf % plot time waveform of signal
plot(t*1000,signal,'k.-','MarkerSize',5); grid on; hold on;
xlabel('Time [ms]'); ylabel('Signal'); title('Time Waveform')
% *******
% now plot rfft of the signal
% NOTE: rfft just takes 1/2 of fft.m output and nomalizes
sigSPEC= rfft(signal);
figure(2); clf; % MAGNITUDE
subplot(211)
plot(freq/1000,db(sigSPEC),'ko-','MarkerSize',3)
hold on; grid on;
ylabel('Magnitude [dB]')
title('Spectrum')
subplot(212)    % PHASE
plot(freq/1000,cycs(sigSPEC),'ko-','MarkerSize',3)
xlabel('Frequency [kHz]'); ylabel('Phase [cycles]'); grid on;
% -------
% play the stimuli as an output sound?
if (1==1),  sound(signal,SR);   end
% -------
% compute inverse Fourier transform and plot?
if 1==1

figure(1);
signalINV= irfft(sigSPEC);
plot(t*1000,signalINV,'rx','MarkerSize',4)
legend('Original waveform','Inverse transformed')

end



Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 0 - non-quantized sinusoid
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SR= 44100; % sample rate [Hz]
Npoints= 8192; % length of fft window

Ø Magnitude	shows	a	peak	at	the	sinusoid’s	frequency
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Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 3 - two quantized sinusoids

Time	domain Spectral	domain
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Ø Magnitude	shows	two	peaks	(note	the	‘beating’	in	the	time	domain)	



Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 4 - click (i.e., an impulse)

Time	domain Spectral	domain
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Ø Click	has	a	flat	magnitude	(This	is	also	a	good	place	to	mention	the	concept	of	a	‘group	delay’)
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Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 5 - noise (uniform distribution)

Time	domain Spectral	domain

Ø Magnitude	is	flat-ish (on	log	scale),	but	actually	noisy.	Phase	is	noisy	too.	
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Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 7 - noise (Gaussian distribution)

Time	domain Spectral	domain
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Ø Magnitude	is	flat	just	like	an	impulse	(i.e.,	flat),	but	the	phase	is	random



Fourier transforms of basic (1-D) waveforms

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [ms]

Si
gn

al

Time Waveform

0 5 10 15 20 25
−73.5

−73

−72.5

−72

−71.5

−71

M
ag

ni
tu

de
 [d

B]

Spectrum

0 5 10 15 20 25
−500

−400

−300

−200

−100

0

Frequency [kHz]

Ph
as

e 
[c

yc
le

s]

0 1 2 3 4 5 6 7 8 9
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [ms]

Si
gn

al

Time Waveform

0 5 10 15 20 25
−46.5

−46

−45.5

−45

−44.5

−44

M
ag

ni
tu

de
 [d

B]

Spectrum

0 5 10 15 20 25
−20

−10

0

10

20

Frequency [kHz]
Ph

as
e 

[c
yc

le
s]

Time	domain

Spectral	domain

Impulse Noise

à Remarkable	that	the	magnitudes	are	identical	(more	or	less)	
between	two	signals	with	such	different	properties.	The	key	
difference	here	is	the	phase:	Timing	is	a	critical	piece	of	the	puzzle!



Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 6 - chirp (flat mag.)

Time	domain Spectral	domain
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Fourier transforms of basic (1-D) waveforms EXspecREP3.m

stimT= 8 - exponentially decaying sinusoid

Time	domain Spectral	domain
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Ø This	seems	to	look	familiar....



Connection back to....
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...	the	harmonic	oscillator!

Ø The	steady-state response	of	the	sinusoidally-driven	
harmonic	harmonic	oscillator	acts	like	a	band-pass	filter

Ø Distinction	between	steady-state response	&	impulse	response
[we’ll	come	back	to	this]



Post-class exercises

Ø Write	a	simple	Matlab script	that	creates	two	sinusoids,	adds	them	together,	
then	visualizes	the	resulting	waveform.	Explore	how	does	the	‘beating	pattern’	
depends	upon	the	relative	frequencies,	phases,	and/or	amplitudes.

Ø Similar	to	above,	try	adding	three	sinusoids	together	and	observe	the	variety	of	
effects	you	can	get	by	changing	the	relative	properties.

Ø Fiddle	around	with	EXbuildImpulse.m and	EXspecREP3.m to	get	a	feel	
for	how	different	time	waveforms	have	different	spectral	representations	and	
vice	versa

Ø Consider	the	difference	between	fft.m &	
rfft.m,	and	consider	how	such	relates	to	
the	bottom	spectral	plot	shown	here

Ø Using	EXbuildImpulse.m,	determine	the	relationship	between	the	
impulse,	the	phase,	and	the	‘group	delay’




