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Ex. Integrals

> Can re-run a few times..... .

- Each run yields a slightly different value....
(except for trapz.m! why so stable?)
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by trapz.m (i.e., Riemann sums)= -34.68724693
via Monte carlo Method 1 (area ratios) -33.3834
via Monte carlo Method 2 (average value) -34.1728

by trapz.m (i.e., Riemann sums)= -34.68724693
via Monte carlo Method 1 (area ratios) -35.1434
via Monte carlo Method 2 (average value) -34.7353

by trapz.m (i.e., Riemann sums)= -34.68724693

via Monte carlo Method 1 (area ratios) = -34.3734
via Monte carlo Method 2 (average value) = -34.4521
by trapz.m (i.e., Riemann sums)= -34.68724693

via Monte carlo Method 1 (area ratios) = -35.9683

via Monte carlo Method 2 (average value) = -35.8865
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FIGURE 4.12 Distributions of 10,000 Monte Carlo estimates of the

integral fol e” dzx. On the left, each integral was evaluated with N =
100 points; on the right, with N = 400 points.

— So the distributions looks like Gaussians..... (this is telling us something important!)

Devries (1994)



Ex. Making a Gaussian distribution EXgaussianl.m

> Simple code to see if we can ‘create’ a normal distribution.....

$ ### EXgaussianl.m ###

clear

M= 1000; $ # of (uniformly distributed) random #s to average

N=1000; $ # of repeats (i.e., how many averages to compute) for histogram
binN= 20; $ # of bins for histogram

figure(l); clf; hold on; grid on;
% +++
% loop thru to compute the N averages (each loop deals with the M random #s)
for nn=1:N
XR= rand(M,1l); % determine array of M random #s
mu(nn)= mean(xR); % compute/store mean value

end

3 +++

[ji,kk]=hist(mu,binN); % detrmine histogram distribution
bar(kk,jj); % plot the histogram (as a bar plot)

- Simply determines a group of uniformly distributed numbers, then averages them.
Subsequently, we keep track of the those mean values and plot as a ‘histogram’



Ex. Making a Gaussian distribution

M= 1000;
N=1000;

oo

# of (uniformly distributed) random #s to average
# of repeats (i.e., how many averages to compute) for histogram
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Random value Mean value
So within a given sample, the M points are ... but the average value (across N
uniformly distributed... repetitions) is normally distributed!

—> This sort of observation demonstrates the notion of a normal distribution and is ultimately
telling us something important about the nature of the underlying probability distribution!



Gaussian distributions

> @Gaussian or ‘normal’ distributions (i.e., the
‘bell-shaped curve’) arise throughout many
contexts in physics and engineering
applications

SHES

> The parent distribution has a relatively
simple analytic form:

2
xr
f(:U) — exp (— 5 ) Note: This expression can be

o2 generalized further and scaled

> This equation contains many of the quantities that we have come across already (e.g., the
mean, standard deviation) and forms the basis for many common statistical measures (e.g.,
95% confidence intervals)

> Standard deviation (STD, or o here) tells you what fraction of the area lays underneath
the curve. For example:

= 2/3 of the area is contained within +/- ¢

»  95% of the area is within +/- 2c

= Hence o is the basis for: confidence intervals, standard error,
Student’s t-tests, the coefficient of variation, .....

Freeman



# of occurences

Gaussian distributions

Be careful!

- A normal distribution doesn’t necessarily tell
you where an individual measurement lies, but

the mean value across a set of measurements
(i.e., what happens for compiling across REPEATED
measurements)
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Ex. Random walks

> A common conceptual starting point in probability, statistical mechanics, and biophysics

> Also known as the ‘drunken sailor’ problem,
we can do this in 1-D, 2-D, 3-D, or higher....

> Imagine a grid, upon which we take a step in
a random direction. We can then trace out a
path as time goes on

> |f we consider an ‘ensemble’ of random walkers, each starting at the
origin and independent of one another, computationally it’s easy for us to
keep track of the average net movement (Mean Squared Distance, MSD)

<x?> - Mean-squared distance
<xX>= Dt D — ‘diffusion’ constant
¢t —time allowed before ‘checking’ <x?>

Devries (1994)
Giordano (1997)
http://mathworld.wolfram.com/RandomWalk3-Dimensional.html



Ex. Random walks
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Figure 7.10: Left: x versus step number (that is, time) for two random walks in one dimension. Here
the steps were of random lengths in the range —1 to 1. Right: < x? > as a function of time for a collection
of these one-dimensional random walks. The results for 500 walks were averaged.

= So while each individual walker is random, the basic idea is that in an
ensemble average, a repeatable/consistent trend emerges

Giordano (1997)



EXrandomWalk1D.m

% ### EXrandomWalklD.m ### 11.15.14

clear;

Y e

N= 200; % Total # of (independent) walkers (each starts at x=0)

M= 100; % Total # of steps for each walker

K= 3; % # of walkers to show individual traces for [3]

bias= 0.5; % number between [0,1] to indicate bias for left vs right (0.5= equal prob.)
Y e

% +++

step_number= zeros(1l,M); 2

x2ave= zeros(1l,M); % allocate array to stored (suquentially averaged) MSD
step number array= [1:1:M]; 2

$ +++

Q

<
% NOTE: the loop is set up in such a way to average x2ave across walkers
for r= 1:N
x=0; % initialize position for r'th walker
position(r,1)= 0;
% loop to go through M steps for r'th walker
for nn=1:M;
% conditional determines whether step is to the left or right
if (rand<bias), x=x+1;

else x=x-1; end;
x2ave(nn)=x2ave(nn)+x"2; % store squared displacement (handles averging across r)
position(r,nn+l)= x; % store displacment for each walker and step
end;
end;
x2ave= x2ave/N; % Divide by number of walkers
% plot MSD
figure(1); = Ensemble of N (independent) walkers
1 n r array, X2 , 'k'); hold on; .
E;;SF;‘S’B ‘;‘;‘Ir’el:g Sy meave s )i hold = Each takes M total steps, each step either
xlabel('Step number'); ylabel('Mean-Squared Distance (x"2)'); |eft()rr1ght
% plot a subset of individual traces .
figure(2); clf; hold on; grid on; = Note that the for loop averages as it goes

for nn=1:K
shade= 1-(nn-1)/K;
plot(position(nn,:), 'Color',[1l 1 1]-shade);
end
xlabel('Step number'); ylabel('Position'); title('Representative traces');
plot ([0 M],[1 1]*sgrt(x2ave(end)), 'g--', 'LineWidth',2) % include MSD bounds at step M
plot ([0 M],[-1 -1]*sgrt(x2ave(end)), 'g--', 'LineWidth',2)
plot(M,sqgrt(mean(position(:,end).”2)), 'ro'); % reality check (another way to compute final MSD)
disp(['Final mean (non-squared) distance = ',num2str(mean(position(:,end)))]);
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EXrandomWalk1D.m
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> One of Einstein’s Annus
Mirabilis papers from
1905 (the other two are
on special relativity and
the photoelectric effect)

> Solidified the foundations of statistical
mechanics and characterized the
conditions for most living things on this
planet (i.e., cell-sized entities)



Brownian motion

Random motion of large object (yellow circle)
due to interaction with many little objects
(black circles)

Can trace out path across time and space

<x(>= Dt

wikipedia (Brownian motion)
Metzler & Klafter (2000)



Brownian motion & Diffusion

Jean Baptiste Perrin (1870-1942)



Brownian motion & Diffusion

<x“>= Dt

>
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o

### EXrandomWalk2D.m ###

EXrandomWalk2D.m

% o Method 1 - simply equal probability one step up/down (U/D) and left/right (L/R)
% o Method 2 - U/D and L/R steps are sampled from a uniform distribution over [-1,1]
% o Method 3 - U/D and L/R steps are sampled from a Gaussian distribution
clear;
| S ——
N= 200; % Total # of (independent) walkers (each starts at x=0)
M= 100; % Total # of steps for each walker
K= 3; % # of walkers to show individual traces for [3]
method= 3; % see comments above
[ S ——
% +++
step_number= zeros(1l,M); %
posAvg= zeros(1l,M); % allocate array to stored (suquentially averaged) MSD
step_number_array= [1l:1:M]; 2
S +++
for r= 1:N
x=0; y=0; % initialize positions for r'th walker

positionX(r,1l)= 0; positionY(r,1)= 0;
% loop to go through M steps for r'th walker

Same basic idea as 1-D code, but allows for
more flexibility

for nn=1:M; L]
if method==
if (rand<0.5), =x=x+1; % conditional for left or right
else x=x-1; end;
if (rand<0.5), y=y+l; % conditional for up or down
else y=y-1; end;
elseif method==2
x= x+2*rand(l)-1; y= y+2*rand(l)-1;
elseif method==3
x= x+randn(1l); y= ytrandn(1l);
end
posAvg(nn)= posAvg(nn)+ (x"2+y"2); % store squared displacement (handles averging across r)
positionX(r,nn+l)= x; % store displacments for each walker and step
positionY(r,nn+l)= y;
end;
end;
posAvg= posAvg/N; % Divide by number of walkers
$ plot MSD

figure(l);
plot(step number_ array,posAvg, 'k'); hold on;

title('MSD for 2-D random walk');

xlabel('Step number'); ylabel('Mean-Squared Distance (x"2+y"2)');
% plot a subset of individual traces

figure(2); clf; hold on; grid on;

for nn=1:K

shade=

1-(nn-1)/K;

plot(positionX(nn,:),position¥(nn,:), 'Color',[1l 1 1l]-shade);

end

xlabel('x"'); ylabel('y'); title('Representative traces');

% also plot MSD (which is a circular arc in this case)

rBND= sqgrt(posAvg(end)); % radius MSD

XBND= linspace(-rBND,rBND,100); yBND= sqrt(rBND"2-xBND."2);

plot (xBND,yBND, 'r--', 'LineWidth',2); plot(xBND,-yBND,'r--', 'LineWidth',2);



EXrandomWalk2D.m
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Ex. Matrix permutations

groupSize= 5; $ # of elements per group

> Random permutations is a randomized
reordering of a set of object

> Useful in a wide range of applications (e.g.,
shuffling a deck of cards, deciding upon a password
or PIN, puzzles, mixing students up for project

groups, ....)

> Fairly easy in Matlab via the built-in

function randperm.m
(see also http://en.wikipedia.org/wiki/Fisher-Yates_shuffle)

- Works by creating a random set of array indices

Note: This is an example of ‘without
replacement’ (more on this in a bit)



EXpermutation.m

### EXpermutation.m ### 10.27.14
Reads in a specified Excel file and creates a random permutation into
% smaller groups (useful to create randomized small groups)

fileL= 'GreekLetters.xlsx'; % list
groupSize= 5; $ # of elements per group
fileS= 'test.mat'; $ file to save to (.mat)

[junk,A]= xlsread(filel); % read in file
p= randperm(numel(A)); % create a random permutation
% loop to group elements together
indx= 1;
for nn=indx:ceil (numel(A)/groupSize)
$ allow for odd-ish number of elements
if (indxtgroupSize>=numel(A))
Group{nn}= A(p(indx:end));

else
Group{nn}= A(p(indx:indx+groupSize-1));
end
indx= indx+ groupSize;
Group{nn} % display to screen

end
% save to file?
if (1==0), save(fileS, 'Group'); end



Resampling

> Basic idea: For a given set of ‘data’, take a random (sub)set and analyze. Rinse &

repeat. Determine the associated statistics of such.

> Can be done ‘with replacement’ or ‘without replacement’

Ex. Consider a container with 10 balls, each with a single letter (A-J) on the side. Now say we want to grab
6 balls at random from the container.

For the ‘with replacement’ condition, each time we grab a ball, we note what it was, then throw it
back in. That is, each time we sample, we do such from 10 balls. Some examples of possible sets
would be: [BGGHCI],[GFADHC],[GFAADC],[AABBCC],[CCCHFA][CHFCAC],.....

For the ‘without replacement’ condition, each time we grab a ball, we do not throw it back in. That is,
each time we sample, there is one less ball than before. Thus, there would never be ‘repeated’ values
(unless two balls had the same letter). Possible sets would be: [GABIEF],[ABCDEF],[JACFEB]



EXpermutation2.m
% ### EXpermutation2.m ###

Demonstrates resampling into subsets both with and without replacement

o

clear

filelL= 'LatinLetters.xlsx'; % list

groupSize= 9; % # of elements per group

fileS= 'test.mat'; ¢ file to save to (.mat)

[junk,A]= xlsread(filel); % read in file

N= numel (A);

p= randperm(N); % create a random permutation (w/o replacement)

NoReplace= A(p(l:groupSize))'
temp= floor (N*rand(l,N))+1; % allow for possible repeated values
Replace= A(temp(l:groupSize))"



Resampling

> Basic idea: For a given set of ‘data’, take a random subset and analyze. Rinse &
repeat. Determine the associated statistics of such.

> Can be done ‘with replacement’ or ‘without replacement’

> Commonly used methods falls into several broad categories. For a (1-D)
data set with N elements:

= Jackknifing — Randomly sample all possible N-1 subsets, calculate your
statistics for each, then aggregate all the results

=  Bootstrapping — Randomly sample with replacement a set with N elements,
calculate your statistics, repeat (for some large number P), then aggregate
all the results

= Subsampling — Randomly sample a smaller subset with M elements (M<N),
calculate your statistics, repeat (for some large number P), then aggregate
all the results (a modification of jackknifing)



Ex. Jackknifing

Fit a straight line to the data set: (x,y) =[0,1.1], [1,1.9], [2,3.2], [3,4.1], [4,4.8]

1. Do a linear regression each on the following:

[0,1.1], [1,1.9], [2,3.2], [3,4.1]
[0,1.1], [1,1.9], [2,3.2], [4,4.8]
[0,1.1], [1,1.9], [3,4.1], [4,4.8]
[0,1.1], [2,3.2], [3,4.1], [4,4.8]
[1,1.9], [2,3.2], [3,4.1], [4,4.8]

2. Now you’d have 5 slopes and 5 intercepts. From this, you can
determine a mean value and an associated uncertainty

Question: How would such a set of parameters compare a fit to the entire
data set? Or the uncertainty from the linear regression to the entire set?

(see previous lecture notes)






% ### EXresampleLinearFit.m ### EXresamp|eL|nearF|t.m

% [see also EXregressionl.m]

clear

xXR= [0 2]; % specify range of x-values . H H

xNum= 100; % number of 'data' points —NOte’ Th|S SUbsampllng methOd

% choose parameters of linear function (y=aD+bD*x+noise) does not use replacement (| e. a
aD= 0.15; % intercept . . e

bD= 0.44; % slope given data point can appear once at
noiseF= 0.1; % noise factor {0.1} .

M= 100; % # of resamples most in a resampled set)

range= 1/3; % range to vary span over [0,1]

data.x= linspace(xR(1l),xR(2),xNum);
data.y= aD+ bD*data.x + noiseF*randn(numel(data.x),1l)'; % determine noisy (straight) line

disp([' 1)
disp([ 'Base function: y= at+b*x= ', num2str(aD),' + ',num2str(bD),'*x (+ Gaussian noise)']);
N= numel (data.x); % total number of points

% Linear regression via built-in Matlab function to ENTIRE data set

[p0,S]= polyfit(data.x,data.y,1);

% also calculate r"2 (coefficient of determination) via

% http://www.mathworks.com/help/matlab/data analysis/linear-regression.html?refresh=true
yfit = polyval(p0,data.x); % this line is equivalent to > yfit = p(l) * x + p(2);
yresid = data.y - yfit;

SSresid = sum(yresid.”2);

SStotal = (length(data.y)-1) * var(data.y);

RSO0= 1 - SSresid/SStotal;

disp([ 'polyfit to entire data set: y= ',num2str(p0(2)),' + ',num2str(p0(1l)),'*x (r"2 = ',num2str(RS0),"')"']1);
Y e

% Resampling: regression on randomly chosen subsets of the data

for nn=1:M
temp= randperm(N); create randomresampling index
tINDX= temp(l:ceil(range*N)); % trim to subset of specified size
[p,k]= polyfit(data.x(tINDX),data.y(tINDX),1l); % fit for subset
fP(nn,:)= p; % store values away

oo

end

msg = [ 'Bootstrapped fit (+/- STD): y =',num2str(mean(fP(:,2))),"' (',num2str(std(£fP(:,2))),...
") + x*' num2str(mean(fP(:,1))),"' (',num2str(std(fP(:,1))),')"']; disp(msg);

S

% visualize

figure(l); clf;

plot(data.x,data.y, 'r."); % original 'data' points

hold on; grid on; xlabel('x'); ylabel('y'); axis([xR(1l) xR(2) min(data.y)-0.25 max(data.y)+0.25]);
plot(data.x,p0(2)+p0(1l)*data.x, 'g-', 'LineWidth',3); % fit to entire data set
plot(data.x,mean(fP(:,2))+mean(fP(:,1))*data.x, 'k--', 'LineWwidth',2); % fit from bootstrapped calculation
legend( 'noisy data', 'polyfit to entire set', 'mean resampled trend', 'Location', 'NorthWest')
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M= 100;
range= 1/
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range to vary span over [0,1]

EXresamplelinearFit.m

noisy data
= polyfit to entire set
= = = bootstrapped average to subset
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Base function: y= atb*x= 0.15 + 0.44*x (+ Gaussian noise)

polyfit to entire data set: y= 0.14192 + 0.44855*x (r"2
Bootstrapped fit (+/- STD): y =0.14512 (0.026083) + x*0.44623

= 0.89384)
(0.023877)



> Wait. What was the point of this?

Good rule of thumb (from Dahlquist & Bjorck):

“If a part of a problem can be treated with
analytical or traditional numerical methods,
then one should use such methods”

Answer: The value of this demonstration
was to illustrate, using an intuitive
example, how resampling might be useful
in the context of resampling a set of data

EXresamplelinearFit.m

1.4H ® noisydata —
== polyfit to entire set

= = = bootstrapped average to subset
1.2+ -

% Base function: y= atb*x= 0.15 + 0.44*x (+ Gaussian noise)
% polyfit to entire data set: y= 0.14192 + 0.44855*x (r"2 = 0.89384)
% Bootstrapped fit (+/- STD): y =0.14512 (0.026083) + x*0.44623 (0.023877)

- Note that we used resampling to not

only determine a best fit, but also obtain
some measure of uncertainty associated
with such!






