
Computational Methods (PHYS 2030)

York University
Winter 2018
Lecture 30

Instructors: Prof. Christopher Bergevin (cberge@yorku.ca)

Schedule: Lecture: MWF 11:30-12:30 (CLH M)

Website: http://www.yorku.ca/cberge/2030W2018.html

−4 −2 0 2 4 6 8
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

x

y

Method 1 (area ratios)

Integral calculated by trapz.m (i.e., Riemann sums)= -34.68724693
Integral calculated via Monte carlo Method 1 (area ratios) = -33.3834
Integral calculated via Monte carlo Method 2 (average value) = -34.1728

Ø Can	re-run	a	few	times.....

Ex. Integrals EXintegrateMC1.m

Integral calculated by trapz.m (i.e., Riemann sums)= -34.68724693
Integral calculated via Monte carlo Method 1 (area ratios) = -35.1434
Integral calculated via Monte carlo Method 2 (average value) = -34.7353

Integral calculated by trapz.m (i.e., Riemann sums)= -34.68724693
Integral calculated via Monte carlo Method 1 (area ratios) = -34.3734
Integral calculated via Monte carlo Method 2 (average value) = -34.4521

Integral calculated by trapz.m (i.e., Riemann sums)= -34.68724693
Integral calculated via Monte carlo Method 1 (area ratios) = -35.9683
Integral calculated via Monte carlo Method 2 (average value) = -35.8865

à Each	run	yields	a	slightly	different	value....	
(except	for	trapz.m!	why	so	stable?)

Devries	(1994)

à So	the	distributions	looks	like	Gaussians.....	(this	is	telling	us	something	important!)

Ex. Making a Gaussian distribution

% ### EXgaussian1.m ###
clear
% -----------
M= 1000; % # of (uniformly distributed) random #s to average
N=1000; % # of repeats (i.e., how many averages to compute) for histogram
binN= 20; % # of bins for histogram
% -----------
figure(1); clf; hold on; grid on;
% +++
% loop thru to compute the N averages (each loop deals with the M random #s)
for nn=1:N

xR= rand(M,1); % determine array of M random #s
mu(nn)= mean(xR); % compute/store mean value

end
% +++
[jj,kk]=hist(mu,binN); % detrmine histogram distribution
bar(kk,jj); % plot the histogram (as a bar plot)

EXgaussian1.m

Ø Simple	code	to	see	if	we	can	‘create’	a	normal	distribution.....

à Simply	determines	a	group	of	uniformly	distributed	numbers,	then	averages	them.	
Subsequently,	we	keep	track	of	the	those	mean	values	and	plot	as	a	‘histogram’

M= 1000; % # of (uniformly distributed) random #s to average
N=1000; % # of repeats (i.e., how many averages to compute) for histogram

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Random value

of

 o
cc

ur
en

ce
s

So	within	a	given	sample,	the	M points	are	
uniformly	distributed...

0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53
0

20

40

60

80

100

120

140

Mean value

of

 o
cc

ur
en

ce
s

...	but	the	average	value	(across	N
repetitions)	is	normally	distributed!	

à This	sort	of	observation	demonstrates	the	notion	of	a	normal	distribution	and	is	ultimately	
telling	us	something	important	about	the	nature	of	the	underlying	probability	distribution!

Ex. Making a Gaussian distribution

x

�

Freeman

Gaussian distributions

Ø Gaussian	or	‘normal’	distributions	(i.e.,	the	
‘bell-shaped	curve’)	arise	throughout	many	
contexts	in	physics	and	engineering	
applications

Ø This	equation	contains	many	of	the	quantities	that	we	have	come	across	already	(e.g.,	the	
mean,	standard	deviation)	and	forms	the	basis	for	many	common	statistical	measures	(e.g.,	
95%	confidence	intervals)

Ø Standard	deviation	(STD,	or	s here)	tells	you	what	fraction	of	the	area	lays	underneath	
the	curve.	For	example:	

§ 2/3	of	the	area	is	contained	within	+/- s
§ 95%	of	the	area	is	within	+/- 2s
§ Hence	s is	the	basis	for:	confidence	intervals,	standard	error,	

Student’s	t-tests,	the	coefficient	of	variation,	

f(x) = exp

✓
� x

2

2�

2

◆
Ø The	parent	distribution	has	a	relatively	

simple	analytic	form:
Note:	This	expression	can	be	
generalized	further	and	scaled

x

�

Gaussian distributions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

Random value

of

 o
cc

ur
en

ce
s

0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53
0

20

40

60

80

100

120

140

Mean value

of

 o
cc

ur
en

ce
s

Be	careful!

à A	normal	distribution	doesn’t	necessarily	tell	
you	where	an	individual	measurement	lies,	but	
the	mean	value	across	a	set	of	measurements	
(i.e.,	what	happens	for	compiling	across	REPEATED	
measurements)

Ex. Random walks

Ø A	common	conceptual	starting	point	in	probability,	statistical	mechanics,	and	biophysics

Devries	(1994)
Giordano	(1997)

http://mathworld.wolfram.com/RandomWalk3-Dimensional.html

Ø If	we	consider	an	‘ensemble’	of	random	walkers,	each	starting	at	the	
origin	and	independent	of	one	another,	computationally	it’s	easy	for	us	to	
keep	track	of	the	average	net	movement (Mean	Squared	Distance,	MSD)

<x2>	- Mean-squared	distance
D – ‘diffusion’	constant
t – time	allowed	before	‘checking’	<x2>

Ø Imagine	a	grid,	upon	which	we	take	a	step	in	
a	random	direction.	We	can	then	trace	out	a	
path	as	time	goes	on

Ø Also	known	as	the	‘drunken	sailor’	problem,	
we	can	do	this	in	1-D,	2-D,	3-D,	or	higher....

Giordano	(1997)

Ex. Random walks

à So	while	each	individual	walker	is	random,	the	basic	idea	is	that	in	an	
ensemble	average,	a	repeatable/consistent	trend	emerges

% ### EXrandomWalk1D.m ### 11.15.14
clear;
% -------------
N= 200; % Total # of (independent) walkers (each starts at x=0)
M= 100; % Total # of steps for each walker
K= 3; % # of walkers to show individual traces for [3]
bias= 0.5; % number between [0,1] to indicate bias for left vs right (0.5= equal prob.)
% -------------
% +++
step_number= zeros(1,M); %
x2ave= zeros(1,M); % allocate array to stored (suquentially averaged) MSD
step_number_array= [1:1:M]; %
% +++
%
% NOTE: the loop is set up in such a way to average x2ave across walkers
for r= 1:N

x=0; % initialize position for r'th walker
position(r,1)= 0;
% loop to go through M steps for r'th walker
for nn=1:M;

% conditional determines whether step is to the left or right
if (rand<bias), x=x+1;
else x=x-1; end;
x2ave(nn)=x2ave(nn)+x^2; % store squared displacement (handles averging across r)
position(r,nn+1)= x; % store displacment for each walker and step

end;
end;
x2ave= x2ave/N; % Divide by number of walkers
% plot MSD
figure(1);
plot(step_number_array, x2ave, 'k'); hold on;
title('MSD for 1-D random walk');
xlabel('Step number'); ylabel('Mean-Squared Distance (x^2)');
% plot a subset of individual traces
figure(2); clf; hold on; grid on;
for nn=1:K

shade= 1-(nn-1)/K;
plot(position(nn,:),'Color',[1 1 1]-shade);

end
xlabel('Step number'); ylabel('Position'); title('Representative traces');
plot([0 M],[1 1]*sqrt(x2ave(end)),'g--','LineWidth',2) % include MSD bounds at step M
plot([0 M],[-1 -1]*sqrt(x2ave(end)),'g--','LineWidth',2)
plot(M,sqrt(mean(position(:,end).^2)),'ro'); % reality check (another way to compute final MSD)
disp(['Final mean (non-squared) distance = ',num2str(mean(position(:,end)))]);

EXrandomWalk1D.m

§ Ensemble	of	N (independent)	walkers
§ Each	takes	M total	steps,	each	step	either	

left	or	right
§ Note	that	the	for loop	averages	as	it	goes			

EXrandomWalk1D.m

Representative	traces	from	three	different	
(independent)	walkers	

0 20 40 60 80 100 120
−10

−5

0

5

10

15

Step number

Po
si

tio
n

Representative traces

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
MSD for 1−D random walk (average from 200 walkers)

Step number

M
ea

n−
Sq

ua
re

d
D

is
ta

nc
e

(x
2)

Mean-squared	distance	traveled	by	a	large	
ensemble	of	walkers

Ø One	of	Einstein’s	Annus
Mirabilis papers	from	
1905	(the	other	two	are	
on	special	relativity	and	
the	photoelectric	effect)	

Ø Solidified	the	foundations	of	statistical	
mechanics	and	characterized	the	
conditions	for	most	living	things	on	this	
planet	(i.e.,	cell-sized	entities)	

Brownian motion

wikipedia (Brownian	motion)
Metzler	&	Klafter (2000)

Random	motion	of	large	object	(yellow	circle)	
due	to	interaction	with	many	little	objects	
(black	circles)	

Can	trace	out	path	across	time	and	space

Brownian motion & Diffusion

Jean	Baptiste	Perrin	(1870-1942)

Brownian motion & Diffusion

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
MSD for 1−D random walk (average from 200 walkers)

Step number

M
ea

n−
Sq

ua
re

d
D

is
ta

nc
e

(x
2)

wikipedia (anomalous	diffusion)

% ### EXrandomWalk2D.m ###
% o Method 1 - simply equal probability one step up/down (U/D) and left/right (L/R)
% o Method 2 - U/D and L/R steps are sampled from a uniform distribution over [-1,1]
% o Method 3 - U/D and L/R steps are sampled from a Gaussian distribution
clear;
% -------------
N= 200; % Total # of (independent) walkers (each starts at x=0)
M= 100; % Total # of steps for each walker
K= 3; % # of walkers to show individual traces for [3]
method= 3; % see comments above
% -------------
% +++
step_number= zeros(1,M); %
posAvg= zeros(1,M); % allocate array to stored (suquentially averaged) MSD
step_number_array= [1:1:M]; %
% +++
for r= 1:N

x=0; y=0; % initialize positions for r'th walker
positionX(r,1)= 0; positionY(r,1)= 0;
% loop to go through M steps for r'th walker
for nn=1:M;

if method==1
if (rand<0.5), x=x+1; % conditional for left or right
else x=x-1; end;
if (rand<0.5), y=y+1; % conditional for up or down
else y=y-1; end;

elseif method==2
x= x+2*rand(1)-1; y= y+2*rand(1)-1;

elseif method==3
x= x+randn(1); y= y+randn(1);

end
posAvg(nn)= posAvg(nn)+ (x^2+y^2); % store squared displacement (handles averging across r)
positionX(r,nn+1)= x; % store displacments for each walker and step
positionY(r,nn+1)= y;

end;
end;
posAvg= posAvg/N; % Divide by number of walkers
% plot MSD
figure(1);
plot(step_number_array,posAvg, 'k'); hold on;
title('MSD for 2-D random walk');
xlabel('Step number'); ylabel('Mean-Squared Distance (x^2+y^2)');
% plot a subset of individual traces
figure(2); clf; hold on; grid on;
for nn=1:K

shade= 1-(nn-1)/K;
plot(positionX(nn,:),positionY(nn,:),'Color',[1 1 1]-shade);

end
xlabel('x'); ylabel('y'); title('Representative traces');
% also plot MSD (which is a circular arc in this case)
rBND= sqrt(posAvg(end)); % radius MSD
xBND= linspace(-rBND,rBND,100); yBND= sqrt(rBND^2-xBND.^2);
plot(xBND,yBND,'r--','LineWidth',2); plot(xBND,-yBND,'r--','LineWidth',2);

EXrandomWalk2D.m

§ Same	basic	idea	as	1-D	code,	but	allows	for	
more	flexibility	

EXrandomWalk2D.m

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x

y

Representative traces

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250
MSD for 2−D random walk

Step number

M
ea

n−
Sq

ua
re

d
D

is
ta

nc
e

(x
2 +y

2)

Ex. Matrix permutations

groupSize= 5; % # of elements per group

Ø Random	permutations	is	a	randomized	
reordering	of	a	set	of	object

Ø Fairly	easy	in	Matlab via	the	built-in	
function	randperm.m

(see	also	http://en.wikipedia.org/wiki/Fisher-Yates_shuffle)

àWorks	by	creating	a	random	set	of	array	indices

Ø Useful	in	a	wide	range	of	applications	(e.g.,	
shuffling	a	deck	of	cards,	deciding	upon	a	password	
or	PIN,	puzzles,	mixing	students	up	for	project	
groups,)

Note:	This	is	an	example	of	‘without	
replacement’	(more	on	this	in	a	bit)

% ### EXpermutation.m ### 10.27.14
% Reads in a specified Excel file and creates a random permutation into
% smaller groups (useful to create randomized small groups)
clear
% --------
fileL= 'GreekLetters.xlsx'; % list
groupSize= 5; % # of elements per group
fileS= 'test.mat'; % file to save to (.mat)
% --------
[junk,A]= xlsread(fileL); % read in file
p= randperm(numel(A)); % create a random permutation
% loop to group elements together
indx= 1;
for nn=indx:ceil(numel(A)/groupSize)

% allow for odd-ish number of elements
if (indx+groupSize>=numel(A))

Group{nn}= A(p(indx:end));
else

Group{nn}= A(p(indx:indx+groupSize-1));
end
indx= indx+ groupSize;
Group{nn} % display to screen

end
% save to file?
if (1==0), save(fileS,'Group'); end

EXpermutation.m

Resampling

Ø Basic	idea:	For	a	given	set	of	‘data’,	take	a	random	(sub)set	and	analyze.	Rinse	&	
repeat.	Determine	the	associated	statistics	of	such.	

Ø Can	be	done	‘with	replacement’	or	‘without	replacement’	

Ex.	Consider	a	container	with	10	balls,	each	with	a	single	letter	(A-J)	on	the	side.	Now	say	we	want	to	grab	
6	balls	at	random	from	the	container.	
• For	the	‘with	replacement’	condition,	each	time	we	grab	a	ball,	we	note	what	it	was,	then	throw	it	

back	in.	That	is,	each	time	we	sample,	we	do	such	from	10	balls.	Some	examples	of	possible	sets	
would	be:	[B	G	G	H	C	I],	[G	F	A	D	H	C],	[G	F	A	A	D	C],	[A	A	B	B	C	C],	[C	C	C	H	F	A],	[C	H	F	C	A	C],

• For	the	‘without	replacement’	condition,	each	time	we	grab	a	ball,	we	do	not	throw	it	back	in.	That	is,	
each	time	we	sample,	there	is	one	less	ball	than	before.	Thus,	there	would	never	be	‘repeated’	values	
(unless	two	balls	had	the	same	letter).	Possible	sets	would	be:	[G	A	B	I	E	F],	[A	B	C	D	E	F],	[J	A	C	F	E	B]

% ### EXpermutation2.m ###
% Demonstrates resampling into subsets both with and without replacement
clear
% --------
fileL= 'LatinLetters.xlsx'; % list
groupSize= 9; % # of elements per group
fileS= 'test.mat'; % file to save to (.mat)
% --------
[junk,A]= xlsread(fileL); % read in file
N= numel(A);
p= randperm(N); % create a random permutation (w/o replacement)
NoReplace= A(p(1:groupSize))'
temp= floor(N*rand(1,N))+1; % allow for possible repeated values
Replace= A(temp(1:groupSize))'

EXpermutation2.m

Resampling

Ø Basic	idea:	For	a	given	set	of	‘data’,	take	a	random	subset	and	analyze.	Rinse	&	
repeat.	Determine	the	associated	statistics	of	such.	

Ø Commonly	used	methods	falls	into	several	broad	categories.	For	a	(1-D)	
data	set	with	N	elements:

§ Jackknifing – Randomly	sample	all	possible	N-1	subsets,	calculate	your	
statistics	for	each,	then	aggregate	all	the	results	

§ Bootstrapping – Randomly	sample	with	replacement	a	set	with	N	elements,	
calculate	your	statistics,	repeat	(for	some	large	number	P),	then	aggregate	
all	the	results	

§ Subsampling – Randomly	sample	a	smaller	subset	with	M	elements	(M<N),	
calculate	your	statistics,	repeat	 (for	some	large	number	P),	then	aggregate	
all	the	results	(a	modification	of	jackknifing)		

Ø Can	be	done	‘with	replacement’	or	‘without	replacement’	

Ex. Jackknifing

Fit	a	straight	line	to	the	data	set:			(x,y)	=	[0,1.1],	[1,1.9],	[2,3.2],	[3,4.1],	[4,4.8]

2.	Now	you’d	have	5	slopes	and	5	intercepts.	From	this,	you	can	
determine	a	mean	value	and	an	associated	uncertainty	

1.	Do	a	linear	regression	each	on	the	following:

• [0,1.1],	[1,1.9],	[2,3.2],	[3,4.1]
• [0,1.1],	[1,1.9],	[2,3.2],	[4,4.8]
• [0,1.1],	[1,1.9],	[3,4.1],	[4,4.8]
• [0,1.1],	[2,3.2],	[3,4.1],	[4,4.8]
• [1,1.9],	[2,3.2],	[3,4.1],	[4,4.8]

Question:	How	would	such	a	set	of	parameters	compare	a	fit	to	the	entire	
data	set?	Or	the	uncertainty	from	the	linear	regression	to	the	entire	set?

(see	previous	lecture	notes)

% ### EXresampleLinearFit.m ###
% [see also EXregression1.m]
clear
% -------------------------------------
xR= [0 2]; % specify range of x-values
xNum= 100; % number of 'data' points
% choose parameters of linear function (y=aD+bD*x+noise)
aD= 0.15; % intercept
bD= 0.44; % slope
noiseF= 0.1; % noise factor {0.1}
M= 100; % # of resamples
range= 1/3; % range to vary span over [0,1]
% -------------------------------------
data.x= linspace(xR(1),xR(2),xNum);
data.y= aD+ bD*data.x + noiseF*randn(numel(data.x),1)'; % determine noisy (straight) line
disp(['==================================']);
disp(['Base function: y= a+b*x= ',num2str(aD),' + ',num2str(bD),'*x (+ Gaussian noise)']);
N= numel(data.x); % total number of points
% ------------
% Linear regression via built-in Matlab function to ENTIRE data set
[p0,S]= polyfit(data.x,data.y,1);
% also calculate r^2 (coefficient of determination) via
% http://www.mathworks.com/help/matlab/data_analysis/linear-regression.html?refresh=true
yfit = polyval(p0,data.x); % this line is equivalent to > yfit = p(1) * x + p(2);
yresid = data.y - yfit;
SSresid = sum(yresid.^2);
SStotal = (length(data.y)-1) * var(data.y);
RS0= 1 - SSresid/SStotal;
disp(['polyfit to entire data set: y= ',num2str(p0(2)),' + ',num2str(p0(1)),'*x (r^2 = ',num2str(RS0),')']);
% ------------
% Resampling: regression on randomly chosen subsets of the data
for nn=1:M

temp= randperm(N); % create randomresampling index
tINDX= temp(1:ceil(range*N)); % trim to subset of specified size
[p,k]= polyfit(data.x(tINDX),data.y(tINDX),1); % fit for subset
fP(nn,:)= p; % store values away

end
msg = ['Bootstrapped fit (+/- STD): y =',num2str(mean(fP(:,2))),' (',num2str(std(fP(:,2))),...

') + x*',num2str(mean(fP(:,1))),' (',num2str(std(fP(:,1))),')']; disp(msg);
% ------------
% visualize
figure(1); clf;
plot(data.x,data.y,'r.'); % original 'data' points
hold on; grid on; xlabel('x'); ylabel('y'); axis([xR(1) xR(2) min(data.y)-0.25 max(data.y)+0.25]);
plot(data.x,p0(2)+p0(1)*data.x,'g-','LineWidth',3); % fit to entire data set
plot(data.x,mean(fP(:,2))+mean(fP(:,1))*data.x,'k--','LineWidth',2); % fit from bootstrapped calculation
legend('noisy data','polyfit to entire set','mean resampled trend','Location','NorthWest')

EXresampleLinearFit.m

Note:	This	subsampling	method	
does	not	use	replacement	(i.e.,	a	
given	data	point	can	appear	once	at	
most	in	a	resampled	set)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

y

noisy data
polyfit to entire set
bootstrapped average to subset

M= 100; % # of resamples
range= 1/3; % range to vary span over [0,1]

% Base function: y= a+b*x= 0.15 + 0.44*x (+ Gaussian noise)
% polyfit to entire data set: y= 0.14192 + 0.44855*x (r^2 = 0.89384)
% Bootstrapped fit (+/- STD): y =0.14512 (0.026083) + x*0.44623 (0.023877)

EXresampleLinearFit.m

Ø Wait.	What	was	the	point	of	this?

Good	rule	of	thumb (from	Dahlquist &	Bjorck):

“If	a	part	of	a	problem	can	be	treated	with	
analytical	or	traditional	numerical	methods,	
then	one	should	use	such	methods”

Answer:	The	value	of	this	demonstration	
was	to	illustrate,	using	an	intuitive	
example,	how	resampling	might	be	useful	
in	the	context	of	resampling	a	set	of	data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

y

noisy data
polyfit to entire set
bootstrapped average to subset

% Base function: y= a+b*x= 0.15 + 0.44*x (+ Gaussian noise)
% polyfit to entire data set: y= 0.14192 + 0.44855*x (r^2 = 0.89384)
% Bootstrapped fit (+/- STD): y =0.14512 (0.026083) + x*0.44623 (0.023877)

à Note	that	we	used	resampling	to	not	
only	determine	a	best	fit,	but	also	obtain	
some	measure	of	uncertainty associated	
with	such!

EXresampleLinearFit.m

