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Figure 4.3: Graphical representation of the integration process. The integration interval is broken up into
a finite set of points. A quadrature rule then determines how to sum up the area of a finite number of
rectangles.

Kutz (2013)
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Figure 4.3: Graphical representation of the integration process. The integration interval is broken up into
a finite set of points. A quadrature rule then determines how to sum up the area of a finite number of
rectangles.
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Note that these formulae have an extra ‘error’ term

Py(x) = a,x" + a,_1x" L+ + ajx + ag (4.2.4)

- Ultimately, we are approximating via a series of polynomials

(and we decide how high we want to go!)
Kutz (2013)



EXintegrationl.m

% Numerical integration example - original source:
% http://ef.engr.utk.edu/ef230-2011-01/modules/matlab-integration/

% User parameters

F = @(x)(sin(x)); % function to integrate

$F = @Q(x)(exp(-x."2/2)); % function to integrate
xL= [0 pi]; % integration limits

N= 5; % Method A - # of points for LEFT and RIGHT

pts= [3 4 5 10 25]; % Method B - # of points to consider integrating (via trapz function)
dur= 1; % Method B - pause duration [s] for trapz loop
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% Show the curve

:;gngé‘n;L(l),xL(Z)]) % a quick way to plot a function What three dlfferent mEthOds are belng
used? Which ones are a ‘black box’?

xlabel('x"); ylabel('F(x)");

% kkkkhkkkkkhkhkkkhkkk
% Method A
% Approximate the integral via brute force LEFT and RIGHT Riemann sums
sumL= 0; sumR=0;
delX= (xL(2)-xL(1l))/N; % step-size
x= linspace(xL(1l),xL(2),N+1); % add one since N is # of 'boxes' and is really N-1
for nn=1:N
sumL= sumL + F(x(nn))*delX;
sumR= sumR + F(x(nn+l))*delX;
end
disp(['left-hand rule yields =',num2str(sumlL),' (for ',num2str(N),' steps)']);
disp(sprintf('right-hand rule yields = %g', sumR));

% kkkkhkkkkkkkkkhkk*k
% Method B
% Approximate the integral via trapz for different numbers of points
for np=pts

figure(2); clf % clear the current figure

hold on % allow stuff to be added to this plot

x = linspace(xL(1l),xL(2),np); % generate x values

y = F(x); % generate y values

a2 = trapz(x,y); % use trapz to integrate

% Generate and display the trapezoids used by trapz

for ii=l:length(x)-1

px=[x(1ii) x(ii+l) x(ii+l) x(ii)]; py=[0 0 y(ii+l) y(ii)];

£i11(px,py,ii)
end
fplot(F,[xL(1),xL(2)]); xlabel('x'); ylabel('F(x)');
disp([ 'area calculated by trapz.m for ',num2str(np),' points =',num2str(a2)]);
title([ 'area calculated by trapz.m for ',num2str(np),' points =',num2str(a2)]);
pause(dur) ; % wait a bit

end

Y kkkkkkkkkkkkhkk

% Method C
al = quad(F,xL(1),xL(2)); % use quad to integrate

'

msg = ['area calculated by quad.m = num2str(al,10)]; disp(msg);



Trapezoid method (Method B)
np= 3

area calculated by trapz.m for 3 points =1.5708

- Are these rectangles? Why not?
— Three points means how many ‘rectangles’?



Trapezoid method (Method B)

area calculated by trapz.m for 4 points =1.8138

np= 4

— What is the associated ‘error’?



Trapezoid method (Method B)

np=

5

area calculated by trapz.m for 5 points =1.8961




Trapezoid method (Method B)
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Trapezoid method (Method B)

area calculated by trapz.m for 25 points =1.9971

np= 25
T
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>> INTexamplel

left-hand rule yields =1.9338 (for 5 steps)
right-hand rule yields = 1.93377

area calculated by trapz.m for 3 points =1.5708
area calculated by trapz.m for 4 points =1.8138
area calculated by trapz.m for 5 points =1.8961
area calculated by trapz.m for 10 points =1.9797
area calculated by trapz.m for 25 points =1.9971
area calculated by quad.m = 1.999999996

>>

- Why do the LEFT and RIGHT Riemann sums yield the same values?
—> Are LEFT and RIGHT better than TRAP?

- How many ‘points’ does quad.m use?



Background: Riemann sums
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- Note that A7 need not be constant (this is helpful computationally!)

Hughes-Hallett et al. (2005)
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Motivation: Differential equations

Harmonic oscillator

&4 yi 4 wir =0

- A very common/useful tool in our toolbox....
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Wave equation F
2 1 9%
8332 o 62 at2 Note: This just a specific case of
Newton’s 2" law (F=ma)!
Laplace’s equation
2 2 2 Maxwell’s equations
= f_32+ 2 T 52 = v.E=P T
X 8y 0z E = p (Gauss'Law)
V-H=0 (Gauss'Law for Magnetism)
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Several basic flavors apparent:
> Ordinary (ODE)

> Partial (PDE)

> Scalar vs. Vector

VxE= _'UE (Faraday's Law)

CE
VxH=J+¢ 5 (Ampere's Law)



Motivation: Systems of differential equations

Lorenz equations
SIR model

dx (‘compartmental’ model in epidemiology)
S = the number of susceptibles, the people who are not yet sick
but who could become sick

dy
dt

dz

I = the number of infecteds, the people who are currently sick
=rr—y—xz fecteds, the peop y

R = the number of recovered, or removed, the people who have
been sick and can no longer infect others or be reinfected.

— =qxy — bz ds
BT

dt = BIS

- Chaos! dl
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dt




Motivation: Systems of differential equations

Discrete LPA Model (Cushing, Costantino, et al.)

L:1 = bA,exp(—cCal; — CeaAs)
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Costatino et al. (1995)



Basic idea(s)

- Differential equations are very common/useful tool in our toolbox....

In a nutshell, we are very good at describing how things change....

dy
- = f(t, 1.
o f(t,y) (7.1.1)

... but less good at finding solutions to the the corresponding equations
Idea: Since equations tell us how things change, numerically integrate to find solution(s)

d Yu — Y
d—}t’ =f(ty) = _HT ~ f(tw,Y,)- (7.1.4)

Approximation: Yor1 =Y, + At f(tn,y,)- (7.1.5)

Kutz (2013)



From the outset: General useful concepts/definitions

- Linear versus nonlinear - Very important distinction!
(we will get a sense of why throughout 2030)

- Slope fields
- Equilibria (i.e., fixed points) and stability

- Phase plane analysis (for systems of ODEs)

. . h (e.g., many ODEs that have solutions
- Existence & uniqueness theorem have an infinite number of them!)

- ‘Initial condition’ versus ‘boundary condition’ problems

— For additional background, look into ‘dynamical systems theory’
(e.g., http://en.wikipedia.org/wiki/Dynamical_system)



Question: How fast does a person learn?

(very) Simple model: Rate a person learns = Percentage of task not yet learned

yis the percentage learned as a @ — 100 — Y
function of time ¢ dt
(a) y (as a percent) (b) Yy (as a percent) (c) Yy (as a percent)
100 s 100 b——pr—— 100 e e
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Figure 11.1: Possible graphs showing percentage of task learned, y, as a function of time, ¢

Solution y(t) — 100 — Ce—t

(e.g., via separation of variables)

Hughes-Hallett et al. (2005)



—= - Note that our ‘model’ (redundantly)
dy Y allows for y greater than 100

Y 100 —
dt J

y(t) = 100 — Ce*

100

» Equilibrium points?

Values of y(t) where dy/dt = 0

1) =100 Figure 11.2: Solution curves for dy/dt = 100 — vy:
Members of the family y = 100 4+ Ce ™!
» Stability?
Do solutions move towards or stable (solution move towards y(¢) = 100
away from the equilibrium if with increasing 1)

starting nearby?

» What determines the value of C? initial conditions (think about E&U theorem!)

Hughes-Hallett et al. (2005)



Some further common examples

Solution

Exponential growth/decay d_P — kP P = Poekt

dt

Newton’s law of heating/cooling

“Newton proposed that the temperature of a hot object decreases at a rate proportional to
the difference between its temperature and that of its surroundings. Similarly, a cold object
heats up at a rate proportional to the temperature difference between the object and its
surroundings.”

temperature Note: Very natural place to think
dT (T T) nitial " about ‘equilibrium points’ and their
= QLo — | N stability
dt temperature —__ | \\\
i Mo,
7“'"‘»_‘_“‘ k\"‘“\
o “‘:\“w
Solution e .
P ~—~Z <— Room temperature
—
T(t) — T() + Ce

time

Hughes-Hallett et al. (2005)



Stability

Newton'’s law of heating/cooling

Note: Very natural place to think
about ‘equilibrium points’ and their

t t
dT B 7 - emperature Stability
dt o Oé( o ) Initial —" "
temperature —__ ~
Solution e

T(t) =Ty + Ce™

<— Room temperature

time

is a horizontal line.

tive infinity.

e An equilibrium solution is constant for all values of the independent variable. The graph

e An equilibrium is stable if a small change in the initial conditions gives a solution which
tends toward the equilibrium as the independent variable tends to positive infinity.

e An equilibrium is unstable if a small change in the initial conditions gives a solution
curve which veers away from the equilibrium as the independent variable tends to posi-

Hughes-Hallett et al. (2005)



Post-class exercises

> What is the difference between ordinary differential equations (ODEs) and
partial differential equations (PDEs)?

When a murder is committed, the body, originally at 37°C, cools according to Newton’s Law of

Cooling. Suppose that after two hours the temperature is 35°C, and that the temperature of the
surrounding air is a constant 20°C.

(a) Find the temperature, H, of the body as a function of ¢, the time in hours since the murder was
committed.

(b) Sketch a graph of temperature against time.
(c) What happens to the temperature in the long run? Show this on the graph and algebraically.
(d) If the body is found at 4 pm at a temperature of 30°C, when was the murder committed?






