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Note	that	these	formulae	have	an	extra	‘error’	term

à Ultimately,	we	are	approximating	via	a	series	of	polynomials	
(and	we	decide	how	high	we	want	to	go!)

Newton-Cotes	Formulae



% Numerical integration example - original source:
% http://ef.engr.utk.edu/ef230-2011-01/modules/matlab-integration/

clear;
% ----------------------
% User parameters
F = @(x)(sin(x)); % function to integrate
%F = @(x)(exp(-x.^2/2)); % function to integrate
xL= [0 pi]; % integration limits

N= 5;    % Method A - # of points for LEFT and RIGHT
pts= [3 4 5 10 25]; % Method B - # of points to consider integrating (via trapz function)
dur= 1;     % Method B - pause duration [s] for trapz loop
% ----------------------

% ***************
% Show the curve 
figure(1);
fplot(F,[xL(1),xL(2)]) % a quick way to plot a function
xlabel('x'); ylabel('F(x)');

% ***************
% Method A
% Approximate the integral via brute force LEFT and RIGHT Riemann sums
sumL= 0; sumR=0; 
delX= (xL(2)-xL(1))/N;    % step-size
x= linspace(xL(1),xL(2),N+1);  % add one since N is # of 'boxes' and is really N-1
for nn=1:N

sumL= sumL + F(x(nn))*delX;
sumR= sumR + F(x(nn+1))*delX;

end
disp(['left-hand rule yields =',num2str(sumL),' (for ',num2str(N),' steps)']);
disp(sprintf('right-hand rule yields = %g', sumR));

% ***************
% Method B
% Approximate the integral via trapz for different numbers of points
for np=pts

figure(2); clf % clear the current figure
hold on % allow stuff to be added to this plot
x = linspace(xL(1),xL(2),np); % generate x values
y = F(x); % generate y values
a2 = trapz(x,y); % use trapz to integrate
% Generate and display the trapezoids used by trapz
for ii=1:length(x)-1

px=[x(ii) x(ii+1) x(ii+1) x(ii)];   py=[0 0 y(ii+1) y(ii)];
fill(px,py,ii)

end
fplot(F,[xL(1),xL(2)]); xlabel('x'); ylabel('F(x)');
disp(['area calculated by trapz.m for ',num2str(np),' points =',num2str(a2)]);
title(['area calculated by trapz.m for ',num2str(np),' points =',num2str(a2)]);
pause(dur);   % wait a bit

end

% ***************
% Method C
a1 = quad(F,xL(1),xL(2)); % use quad to integrate
msg = ['area calculated by quad.m = ' num2str(a1,10)]; disp(msg);

What	three	different	methods	are	being	
used?	Which	ones	are	a	‘black	box’?

EXintegration1.m
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area calculated by trapz.m for 3 points =1.5708

Trapezoid method (Method B)
np= 3

à Are	these	rectangles?	Why	not?
à Three	points	means	how	many	‘rectangles’?



Trapezoid method (Method B)
np= 4
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area calculated by trapz.m for 4 points =1.8138

à What	is	the	associated	‘error’?



Trapezoid method (Method B)
np= 5
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area calculated by trapz.m for 5 points =1.8961



Trapezoid method (Method B)
np= 10
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area calculated by trapz.m for 10 points =1.9797



Trapezoid method (Method B)
np= 25
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area calculated by trapz.m for 25 points =1.9971



à Why	do	the	LEFT	and	RIGHT	Riemann	sums	yield	the	same	values?

à Are	LEFT	and	RIGHT	better	than	TRAP?

à How	many	‘points’	does	quad.m use?	



Background:	Riemann	sums

Hughes-Hallett et	al.	(2005)

r v5;
Example4 Interpret the definite integral ,/ sin(22) d;r in terms of areas.

Solution The integral is the area above the r-axis, 41, minus the area below the r-axis,,42. See Figure 5.22.
Estimating the integral with a calculator gives

r t/2n

/ 'int.r2 )dr : o.-13.
Jo

The graph of y : sit lr:) crosses the r-axis where r:2 : r,thatis, at:r - tC The next crossing is
at r - \,ry;. Breaking the integral into two parts and calculating each one separately gives

",/r ,r/2r
I ' sir(.i 2.1d.r : g.39 and I sirri.r2; r/.r 0.46.Jo J, -

So ,41 : 0.89 and A2 - 0.46. Then. as we would expect,

["tr:/ sin(,r2) d,r : At Az : 0.89 0.46 - 0.43.
.lo

Chapter Five KEY C0NCEPT: THE DEFINITE INTEGRAL

iul*r* G+*+r*i ffi l+:rea* F: iE#rcq;;

Left- and right-hand sums are special cases of Riemann sums. For a general Riemann sum we
allow subdivisions to have different lengths. Also, instead of evaluating / only at the left or right
endpoint of each subdivision, we allow it to be evaluated anywhere in the subdivision. Thus, a

general Riemann sum has the form
n

! Vutu. of /(t) at some point in 'lt]' subdivision x Length of itl' subdivision.
i:7

(See Figure 5.23.) As before, we let ls, tl, . . . , t,, be the endpoints of the subdivisions, so the length
of the i-th subdivision is Al, : tt - t.;-t.For each zl we choose a point ci in the zl-th subinterval at
which to evaluate /, leading to the following definition:

;] A general Riemann sum for / on the interval [a, b] is a sum of the form

\ It",)xr,'
,- I

b, and, for i, : 1,...,n, Ltt. : tt. -f;-r, and tt-r I ct I t,i.

I
!
3' where a :1o.--11.--...11r:
:

t"""_ _
If ,/ is continuous, we can make a general Riemann sum as close as we like to the value of

the deflnite integral by making the interval lengths small enough. Thus, in approximating definite
integrals or in proving theorems about them, we can use general Riemann sums rather than left-
or righrhand sums. The online theory supplement at www.wiley.com/college/hugheshallett shows
how general Riemann sums are used in proving theorems.

f (t)

o tt ci ti+t tt

ii**re L?i: A general Riemann sum approximating jb 7(t) dt

à Note	that	Dt need	not	be	constant	(this	is	helpful	computationally!)



Summary
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5.1 HOW DO WE MEASURE DISTANCE TRAVELED?

1)

o-lo lr tz"'t" t l":h

Figure 5"$: Righrhand sums

a:to tt tz"'tn t t.,,-b
Fig*r* 5"S: Lefrhand sums

DilTerence between

upper and lower estimates

*45

&***ra*y *f HstE*:etcs

For either increasing or decreasing velocity functions, the exact value of the distance traveled lies
somewhere between the two estimates. Thus, the accuracy of our estimate depends on how close
these two sums are. For a function which is increasing throughout or decreasing throughout the
interval la, b]:

(Absolute values make the differences nonnegative.) In Figure 5.10, the area of the light rectangles
is the difference between estimates. By making the time interval, Al, between measurements small
enough, we can make this difference between lower and upper estimates as small as we like.

Diflerence
between
estimates

DifTerence between

.f (a) and .f (b)
Lt - f (t) - .f (a;)1. Lt.

lf(t)-f@)l

x Ai*

u - Lo L1 L2

.f (t- r)

Figur* S.1*: Left and right sums if / is decreasing

7.6 APPROXIMATION ERRORS AND SIMPSON'S RULE

Table 7.2 Ratio oJ the errors as n increases fo, 1l i ar
Ratio of errors
in lelt rule

Ratio of erors
in right rule

Enor(2) / Errori 101 5.47 4.57

Eror(10)/Eror(50) 5.10 4.90
Error'(50)/Eror(250) 5.02 4.98

There is nothing special about the number 5; the same holds for any factor. To get one ex'ra
digit of accuracy in any calculation, we must make the error 1/10 as big, so we must increase n by
a factor of 10. In fact,.for the left or right rules, each extra digit of accuracy require,s about l0 times
the work. The calculator used to produce these tables took about half a second to compute the left
rule approximation for n : 50, and this yields lri 2 to two digits. To get three correct digits, n would
need to be around 500 and the time would be about 5 seconds. Four digits requires n : 5000 and
50 seconds. Ten digits requires rt : 5 .10e and 5 . 107 seconds, which is more than a year! Clearly,
the errors for the lelI and right rules do not decrease fast enough as n increases for practical use.

Error in Trapezoid and Midpoint Rules
Table 7.3 shows that the trapezoid and midpoint rules produce much better approximations to
Ii Ql") r1r thanthe left and right rules.

Again there is a pattern to the erors. For each n, the midpoint rule is noticeably better than the
trapezoid rule; the error for the midpoint rule, in absolute value, seems to be about half the error of
the trapezoid rule. To see why, compare the shaded areas in Figure 7.14. Also, notice in Table 7.3
that the errors for the two rules have opposite signs; this is due to concavity.

We are interested in how the errors behave as n increases. Table 7.4 gives the ratios of the
er:rors for each rule. For each rule, we see that as z increases by a factor of 5, the error decreases
by a factor of about 25 : f;2. In fact, it can be shown that this squaring relationship holds for any
factor, so increasing 'rtby a factor of I0 will decrease the error by a f'actor of about 100 : 102.
Reducing the eror by a factor of 100 is equivalent to adding two more decimal places of accuracy
to the result.

345

Table 7"3 The errors for the trapez.oitl
ancl mirlpoint rules Jbr .l'l I ar

'n,
Error in
trapezoid rule

Eror in
midpoint rule

2 -0.0152 0.0074
10 0.00062 0.00031
50 0.0000250 0.0000125

250 -0.0000010 0.0000005

Trapezoid
err0r

f (.,):

Figure 7.14: Errors in the midpoint and
trapezoid ruies

In other words: In the trapez.oid or midpoint rules, each extra 2 digit,s of accuracy require.t about l0
times the w:ork.

This result shows the advantage of the midpoint and trapezoid rules over the left and right rules:
less additional work needs to be done to get another decimal place ofaccuracy. The calculator used
to produce these tables again took about half a second to compute the midpoint rule for li * a"
withn-50,andthisgets4digitscorrect.Thustoget6digitswouldtaken:500and5seionds,
to get 8 digits would take 50 seconds, and to get 10 digits would take 500 seconds, or about l0
minutes. That is still not great, but it is certainly better than the 1 year required by the lefi or right
rule.
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Motivation:	Differential	equations

à A	very	common/useful	tool	in	our	toolbox....
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Laplace’s	equation

Maxwell’s	equations

Note:	This	just	a	specific	case	of	
Newton’s	2nd law	(F=ma)!

Several	basic	flavors	apparent:
Ø Ordinary	(ODE)
Ø Partial	(PDE)
Ø Scalar	vs.	Vector

Harmonic	oscillator



Motivation:	Systems	of	differential	equations

Lorenz	equations

dx

dt

= �(y � x)

dy

dt

= rx� y � xz

dz

dt

= xy � bz

SIR	model
(‘compartmental’	model	in	epidemiology)

I1,8 SYSTEMS OF DIFFERENTIAL EQUATIONS 567

Being able to predict how many people will get sick, and when, is an imporlant step toward con-
trolling an epidemic. This is one of the responsibilities of Britain's Communicable Disease Surveil-
lance Centre and the US's Center for Disease Control and Prevention.

The S-/-J? model
We apply one of the most commonly used models for an epidemic, called the ^9-1-E model, to the
boarding school flu example. The population ofthe school is divided into three groups:

S : the number of susceptibles, the people who are not yet sick
but who could become sick

I - the number of infecteds, the people who are currently sick
fi : the number of recovered, or removed, the people who have

been sick and can no longer inf'ect others or be reinfected.

The number of susceptibles decreases with time, as people become infected. We assume that
the rate people become infected is proportional to the number of contacts between susceptible and
infected people. We expect the number of contacts between the two groups to be proportional to both
S and 1. (If S doubles, we expect the number of contacts to double; similarly, if I doubles, we expect
the number of contacts to double.) Thus we assume that the number of contacts is proportional to
the product, 51. In other words, we assume that for some constant a ) 0,

d,s /
,lt: (

Rate susceptibles
get sick

aSI.

Rate infecteds
-aSI-bLget removed

)-
(The negative sign is used because S is decreasing.)

The number of infecteds is changing in two ways: newly sick people are added to the infected
group, and others are removed. The newly sick people are exactly those people leaving the suscep-
tible group and so accrue at a rate of ctS I (with a positive sign this time). People leave the infected
group either because they recover (or die), or because they are physically removed from the rest of
the group and can no longer infect others. We assume that people are removed at a rate proportional
to the number sick, or bI, where b is a positive constant. Thus,

dI
dt

Rate susceptibles
get sick

Assuming that those who have recovered from the disease are no longer susceptible, the recov-
ered group increases at the rate of bI, so

dR
,1, - bl

We are assuming that having the flu confers immunity on a person, that is, that the person cannot
get the flu again. (This is true for a given strain of flu, at least in the short run.)

In analyzing the flu, we can use the fact that the total population ,S + 1 + fi is not changing.
(The total population, the total number of boys in the school, did not change during the epidemic.)
Thus, once we know S and 1, we can calculate fi. So we restrict our attention to the two equations

-aS I
aSI - bI.

dS
(lt
dI
d,t

dS

dt
= ��IS

dI

dt
= �IS � �I

dR

dt
= �I

à Chaos!



82 3I BIFURCATIONS

Table 2.1 in Chapter 2 contains parameter estimates for the determin-
istic LPA mo del (2.2) derived from the data of the Desharnais experiment.
For the point estimates in that table (reported for a unit of flour volume
V : I) the LPAmodel

3.1 | A Bifurcation Experime:-:
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question we design an eq
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Pt+t: 0 - l.tiLt
At+t: Plexp(-c*Ar) * (1 - &)At

(3.1)

predicts a stable cycle of period 2. However, if the adult death rate pr.,

is changed from the estimated value pa: 0.1108 in Table 2.1, then the
model predicted attractor can change. The bifurcation diagram in Fig. 3.1
shows howthe attractor changes as p., ranges over the allowable interval
from 0 to 1. In this diagram we see two period-doubling bifurcations and
an invariant-loop bifurcation. Specifically, the parameterized LPA model
predicts that Z castaneum populations with very low adult death rates trc,
will display stable equilibrium dlmamics. HoweveS the equilibrium will
destabilize and a (stable) 2-cycle bifurcationwill occur as po is increased
from low to intermediate values. This 2-cycle in turn will undergo a bifur-
cation and return to a stable equilibrium when tr2, is increased from inter-
mediate to high values.l Finally, at very high values of. ptothe stable equi-
librium will again destabilize and the resulting bifurcation gives rise to a
stable invariant loop, i.e., the beetle populations will extribit quasiperi-
odic (but technically not chaotic) oscillations.

The dynamic bifurcations predicted by the LPA model (3.1) in Fig. 3.1
are not intuitive consequences of an increased adult death rate. They
are highly nonlinear phenomena. Therefore, since it is not difficult to
manipulate the adult death rate in laboratory cultures of flour beetles,
this bifurcation scenario presents an excellent experimental opportunity
to test nonlinear population theory. A successful test of these model
predicted bifurcations would, in and of itself, be a noteworthy case study

I In actuality this reequilibration is not a "reverse" period doubling bifurcation, i.e., it is
not a period-doubling bifurcation that occurs as pro decreases through a critical value.
Instead, aperiod-doublingbifurcation occurs as p,oincreasesthrough the criticalvalue (at
approximately 0,36), causing the equilibrium to become stable and causing the creation
of unstable 2-cycles. Such a bifurcation is called "subcritical." As a result, there are values
of po for which stable equilibria, unstable 2-cycles, and stable 2-cycles simultaneously
exist. However, as,rz, increases further, the stable 2-cycles (which emanate from the first
period-doubling bifurcation at approximately 0.02) and the unstable 2-cycles disappear;
they "collide" and eliminate each other in a saddle-node bifurcation. This somewhat
complicated, multiple attractor situation occurs over a very small interval of p, values
and is barely visible in Fig. 3.1. It therefore plays no role in our study.
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Discrete	LPA	Model	(Cushing,	Costantino,	et	al.)

38 2 I MODELS

FIGURE 2.1 I the life cycle of the flour beetle, showing the dominant cannibalistic interac-
tions between different life-cycle stages.

and relative humidity (55To). Some particular details of the experimental
protocols were, by design, unique to each study. We will clearly identify
these details when each experiment is individually discussed.

Replication is a hallmark of TTibolium experiments. Many single (or
mixed species) cultures can be started with the same initial population
numbers and demography and maintained under identical conditions.
The ability to obtain replicate cultures is an important asset in conduct-
ing studies of population dlmamics, an asset all too often not available
to researchers. Not surprisingly, however, replicate cultures identically
initiated and maintained do not always dynamically evolve in identi-
cal ways. Random effects can cause differences - sometimes significant
differences- among replicates. As we will see in our studies, rather than
being an annoying problem such differences can be illuminating and lead
to a deeper understanding of a population's dynamics and their causal
mechanisms.

The ability to manipulate cultures is also a critical feature of the Tri-
bolium system when used as an experimental animal model. It is easy
to accomplish temporal variations in environmental factors such as
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à Chaos!

Motivation:	Systems	of	differential	equations



Basic	idea(s)

à Differential	equations	are		very	common/useful	tool	in	our	toolbox....

In	a	nutshell,	we	are	very	good	at	describing	how	things	change....

Kutz (2013)

...	but	less	good	at	finding	solutions	to	the	the	corresponding	equations

Idea:	Since	equations	tell	us	how	things	change,	numerically	integrate	to	find	solution(s)	

Approximation:



From	the	outset:	General	useful	concepts/definitions

- Equilibria (i.e.,	fixed	points)	and	stability

à For	additional	background,	look	into	‘dynamical	systems	theory’
(e.g.,	http://en.wikipedia.org/wiki/Dynamical_system)

- Phase	plane	analysis	(for	systems	of	ODEs)

- Slope	fields

- Linear	versus	nonlinear

- Existence	&	uniqueness	theorem

à Very	important	distinction!
(we	will	get	a	sense	of	why	throughout	2030)

- ‘Initial	condition’	versus	‘boundary	condition’	problems

(e.g.,	many	ODEs	that	have	solutions
have	an	infinite	number	of	them!)



Ex.

Hughes-Hallett et	al.	(2005)

Question:	How	fast	does	a	person	learn?

(very)	Simple	model:			Rate	a	person	learns	=	Percentage	of	task	not	yet	learned	

dy

dt
= 100� yy is	the	percentage	learned	as	a	

function	of	time	t

524 Chapter Eleven DIFFERENTIAL EQUATIONS

} X.tr WHATISA DIFFERENTIALEQUATION?

h'!*w Fast D*es e Pers*n Le*rn?
Suppose we are interested in how fast an ernployee learns a new task. One theory claims that th:
more the ernployee already knows of the task, the slower he or she learns. In other words. if u :-
the percentage of the task that has already been mastered, afi rly lrlt the rate at which the emplor e.
learns. then dgf,h decreases as y increases.

What can we say about y as a function of time, t? Figure 11.1 shows three graphs whose slop.-
rlylrlt, decreases as y increases. Figure 11.1(a) represents an employee who starts learning at I -
and who eventually masters 1007o of the task. Figure ll.l(b) represents an employee who star:.
later but eventually masters 1007o of the task. Figure 1l.l(c) represents an employee who stan-
learning at t : 0, but who does not master the whole task (since y levels off below 1007o).

(b) y(asapercent)(a) y(asapercent)

tu0
,/

IL -t

100 i
(c) y(asapercent)

100 I'/
L+

Figur* I1.'l : Possible graphs showing percentage of task learned, g, as a function of time, I

Setti*g up a *iffer*ntial *quati*n to fu1*dei l'**w a *erse* Lear*s

To describe more precisely how a person learns, we need more exact infbrmation about how r1y

depends on i7. Suppose, if time is measured in weeks, that

Rate a person learns Percentage oftask not yet learned.

Since g is the percentage iearned by time I (in weeks), the percentage not yet learned by that tin::
is 100 y. So we have

'! - ruu 'a.
clt

Such an equation, which gives information about the rate of change of an unknown function. r-
called a differential equatiotl.

SolvE*g the *ifferential €quatie* Nua:*riceiEy

Suppose that the person starts learning at time zero, so U : 0 when t : 0. Then initially the persi.:
is learnin-e at a rate

? - lnO-u, lOU ;pet rvt'ek.rlt
In other words, if the person were to continue leaming at this rate, the task would be mastered in .,

week. In fact, however, the rate at which the person iearns decreases, so it takes more than a wee\
to get close to mastering the ttisk. Let's assume a five-day work week and that the 1007a per \l'eer
learning rate holds for the whole first day. (lt doesn't, but we assume this for now.) One day is 1,:
of a week, so during the flrst day the person learns 100(1/rt) : 2A%, of the task. By the end of th.
first day the rate at which the person learns has theretbre been reduced to

! :,L)0 - 2U = g0, I p"r.ueck.tlt
Thus, during the second day the person learns 80(1/5) :16%, so by the end of the second day the
person knows 20 + 16 : 36%, of the task. Continuing in this fashion, we compute the approximate
y-valuesl in Table 11. l.
-|Ih;";;r"rr"r,"ro.-i.....9. ll.....lgdaysrvcrecomputcdbythcsamemethod.butomittedfromthetablL'.

y(t) = 100� Ce�tSolution	
(e.g.,	via	separation	of	variables)



Ex.

Hughes-Hallett et	al.	(2005)

y(t) = 100� Ce�t

11.1 WHAT IS A DIFFERENTIAL EOUATION?

Table '!1.'t Approrimate percentage o.f task learued as a.fwtction of time
Time (working days) i 0 3i4
Percentage learned 89.3

& F*rmul* f*r the S*iutE*n tc ti:* ffiifferenti*E Squati*n
A function U : J(t) which satislies the diflerential equation is called asolution. Figure 11.1 con-
tains graphs of possible solutions and Table I I .1 shows approximate numerical values of a solution
to the equation

"l -'t)tt-a'dt
Later in this chapter, we see how to obtain a formula tbr the solution:

'!l - loo -l Ce-t.
wl.rere C is a constant. To check that this fonnula is comect, we substitute into the differential
equation, giving:

Left side - n' : _.c,, t

tlt
Right side : 100 ,u - L00 (100 + Cc: L) - Ce-t.

Since we get the same result on both sides, g : 100tCe 1 is a solution of this differential equation.

Finding the &rhrtreny **nst*r:t: l*5tiai C*ndit!ens
To find a value for the arbitrary constant C, we need an additional piece of infbrmation-usually
the initial vah-re of y. If, for example, we are told that g - 0 when I : 0, then substituting into

r/-1oot,Cc t

shows us that
0-100 lCc:o, so C: 100.

So the function'q : 100 - 100e ' satisfies the differential equation and the condition that.g - g
when f : 0.

Th* Fer*ily of $eluti*n*
Any solution to this differential equation is of the form y - 100 + Ce: t for some constant C. Like
a family of antiderivatives. this family contains an arbitrary constant! Cl. We say that the general
solution to the dillerential equation dyldt:100 - 37 is the family of frinctions 9 - 100 I Ce L.

The solution 3y - 100 - 100r: I that satisfies the difl'erential equation together with the initial
condition that 'y - 0 when t - 0 is called a partit:ulur solution. The differential equation and
the initial condition together are cal1ed at initial value prcblenr. Several members of the family of
solutions are graphed in Figure I 1.2.

Figure 1l,3: Solution curves for d.u ld,t : 100
Members of the farnily 9 - 100 I C)e t

59.0 i (t] 2

C
- 100

50
C_

Ø Equilibrium	points?

Values	of	y(t)	where	dy/dt = 0

dy

dt
= 100� y

y(t)	=	100

Ø Stability?

Do	solutions	move	towards	or	
away	from	the	equilibrium	if	
starting	nearby?

stable	(solution	move	towards	y(t)	=	100
with	increasing	t)

Ø What	determines	the	value	of	C? initial	conditions	(think	about	E&U	theorem!)

à Note	that	our	‘model’	(redundantly)	
allows	for	y greater	than	100



Some	further	common	examples

Exponential	growth/decay dP

dt
= kP P = P0e

kt

Solution

Newton’s	law	of	heating/cooling

“Newton	proposed	that	the	temperature	of	a	hot	object	decreases	at	a	rate	proportional	to	
the	difference	between	its	temperature	and	that	of	its	surroundings.	Similarly,	a	cold	object	
heats	up	at	a	rate	proportional	to	the	temperature	difference	between	the	object	and	its	
surroundings.”

11.5 GROWTH AND DECAY *4.3

T*hi* 1! "ri' Volume and outflow in Great Lakes

,,1" ^s l*3r l, - n.^3 *,-.r-(11"::*91:lfr1l i : !I:"iy:-sl1.. i ...Superior
Michigan
Erie
Ontario

t2.2
4.9

0.46
1.6

i 65.2
!| 158
Ii 175

I _?9?

Example2

Solution

According to this model, how long will it take for 907o of the pollution to be removed from Lake
Erie? For 997c to be removed?

Substituting r and V for Lake Erie into the differential equation for Q gives

La : Lo: -175 o: -0.380lt v" 0.16.10r
where i is measured in years. Thus Q is given by

Q:Qoe 038''

When 907o of the pollution has been removed, l07o remains, so Q - 0.1Qu. Substituting gives

0.1Q0-Qc,e 038'.

Canceling Qs and solving for t, we get

,- - hr(u'l) r6rears.
0.38

When 997c of the pollution has been removed, Q : 0.01Q0, so I satisfies

0.01Q0:Qo6 038t.

Solving for t gives
- ln(0.01)

0.38

l'.f*:+'t*st'* L*',ra *l Ft**ti:=g +tr:* ***:tri*g
Newton proposed that the temperature of a hot object decreases at a rate proportional to the differ-
ence between its temperature and that of its surroundings. Similarly, a cold object heats up at a rate
proportional to the temperature difference between the object and its surroundings.

For example, a hot cup of coffee standing on the kitchen table cools at a rate propofiional
to the temperature difference between the coffee and the surrounding air. As the coffee cools, the
rate at which it cools decreases, because the temperature difference between the coffee and the
air decreases. In the long run, the rate of cooling tends to zero, and the temperature of the coffee
approaches room temperature. See Figure 1 1.34.

temperature

lnitial
temperature ----*1.'"

-='--l.;_----
_.,..'_i:;::::i:ih ..- Room temperature

time

ilig:;r+: 11.;14: Temperature of two cups of coffee with different initial
temperatures

T (t) = T0 + Ce�↵t

Solution

Note:	Very	natural	place	to	think	
about	‘equilibrium	points’	and	their	
stability

Hughes-Hallett et	al.	(2005)

dT

dt
= ↵(T

o

� T )



Stability

Newton’s	law	of	heating/cooling

T (t) = T0 + Ce�↵t

Solution

Hughes-Hallett et	al.	(2005)
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According to this model, how long will it take for 907o of the pollution to be removed from Lake
Erie? For 997c to be removed?

Substituting r and V for Lake Erie into the differential equation for Q gives

La : Lo: -175 o: -0.380lt v" 0.16.10r
where i is measured in years. Thus Q is given by
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When 907o of the pollution has been removed, l07o remains, so Q - 0.1Qu. Substituting gives

0.1Q0-Qc,e 038'.

Canceling Qs and solving for t, we get
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When 997c of the pollution has been removed, Q : 0.01Q0, so I satisfies
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Solving for t gives
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l'.f*:+'t*st'* L*',ra *l Ft**ti:=g +tr:* ***:tri*g
Newton proposed that the temperature of a hot object decreases at a rate proportional to the differ-
ence between its temperature and that of its surroundings. Similarly, a cold object heats up at a rate
proportional to the temperature difference between the object and its surroundings.

For example, a hot cup of coffee standing on the kitchen table cools at a rate propofiional
to the temperature difference between the coffee and the surrounding air. As the coffee cools, the
rate at which it cools decreases, because the temperature difference between the coffee and the
air decreases. In the long run, the rate of cooling tends to zero, and the temperature of the coffee
approaches room temperature. See Figure 1 1.34.

temperature

lnitial
temperature ----*1.'"

-='--l.;_----
_.,..'_i:;::::i:ih ..- Room temperature

time

ilig:;r+: 11.;14: Temperature of two cups of coffee with different initial
temperatures

*4S Chapter Eleven DIFFERENTIAL EQUATIONS

giving
H :20.

Regardless of the initial temperature, Il always gets

result, 11 : 20 is called a stable eqtillbrium3 for 11'
closer and closer to 20 as t + oo. As a

' 
- 

B: [0-ekl
t

H :20 + 10e-kt
30

20

10

'\--=**-* * 1--._--.*-*:":=:.: 10

:20 - l}e-kt
t

Fig*r'* tt"**: H :20 is stable equilibrium (,k > 0) Figur*1tr.3T: B : 10 is unstable equilibrium (k > 0)

A different situation is disptayed in Figure 11.37, which shows solutions to the differential
equation 

{:t1r- r,01
d,t

for some fixed ,k > 0. Solving dB ldt: 0 gives the equilibrium B : 10, which is unstable because

if B starts near 10, it moves away as t ---+ oo.
In general, we have the following definitions.

i . en equilibrium solution is constant for all values of the independent variable. The graph

! o An equilibrium is stable if a small change in the initial conditions gives a solution which

i tends toward the equilibrium as the independent variable tends to positire infinity. 
:I ------ - - -' 
:

! . ,q.r equilibrium is unstable if a small change in the initial conditions gives a solution 
I

E tive infinity. 
.t.___-

Solutions which do not veer away from an equilibrium solution are also called stable. If the

differential equation is of the form y' : f (d, equilibrium solutions can be found by setting g/ to
zeto.

Exercises and Problems lor Section 11.5

ffix*r*is*e

L. Each curve in Figure 1 1.38 represents the balance rn a
bank account into which a single deposit was made at
time zero. Assuming continuously compounded interest,
find:

(a) The curve representing the largest initial deposit'
(b) The curve representing the largest interest rate'
(c) Two curves representing the same initial deposit'
(d) Two curves representing the same interest rate'

bank
balance (tV) (ilt)

l

\ i .i ..,,'
| ,'' :-t'

I -.1''l.r'
l!'- -'

(lt)

(r)

L_-. time

3In more advanced work, this behavior is described as asymptotic stability'

F!gur* t l.GS

Note:	Very	natural	place	to	think	
about	‘equilibrium	points’	and	their	
stabilitydT

dt
= ↵(T

o

� T )



Post-class exercises

Ø What	is	the	difference	between	ordinary	differential	equations	(ODEs)	and
partial	differential	equations	(PDEs)?

Example3

544 Chapter Eleven DIFFERENTIAL EQUATIONS

Solution

When a murder is committed, the body, originally at 37oC, cools according to Newton's Lau. tr-
Cooling. Suppose that after two hours the temperature is 35'C, and that the temperature of th.
surrounding air is a constant 20oC.
(a) Find the temperature, 11, of the body as a function of l, the time in hours since the murder u a.

committed.
(b) Sketch a graph of temperature against time.
(c) What happens to the temperature in the long run? Show this on the graph and algebraically.
(d) If the body is found at 4 pm at a temperature of 30'C, when was the murder committed?

(a) We first flnd a differential equation for the temperature of the body as a function of time. Neu -

ton's Law of Cooling says that for some constant o,

Rate of change of temperature : o(Temperature difference).

lf 11 is the temperature of the body, then

Temperature difference : H - 20

dH _^,,]t __,H-20).
What about the sign of o? If the temperature difference is positive (i.e., H > 20), then 11 is
falling, so the rate of change must be negative. Thus cr should be negative, so we write:

dH
i, : k(H -20\' lorsomek>o'

Separating variables and solving, as in Example 1 on page 537, gives:

H - 20: Be-kt.

To find B. substitute the initial condition that H : 37 when I : 0:

37 - 20: Be-k(o) - B.

soB-17.Thus,
H-20:\7e-kt.

To find k, we use the fact that after 2 hours, the temperature is 35oC, so

35 - 20 :17s t'(z).

Dividing by 17 and taking natural logs, we get:

./rr\
r" (*') - tn1" 'k1\17l

-0.125 : -2k
k = 0.063.

Therefore, the temperature is given by

H - 20 :77e.-o'063t

H :20 + I7e o'o63t




