Current Topics in Biophysics (BPHS 2090)

Instructor: Prof. Christopher Bergevin (cberge@yorku.ca)

Website: http://www.yorku.ca/cberge/2090F2015.html

References/Acknowledgement:
- Weiss (1996)
- Berg (1993)
- Dusenbery (2009)
Question: So how can we tell the difference between passive and active?
“Anomalous diffusion”

Question:
So how can we tell the difference between passive and active?

Answer:
How “normal” is your diffusion?

Fig. 1. Thermal diffusion (blue line) of a particle in a liquid is characterized by an MSD given by $<\Delta x^2(\tau) > = 2D\tau$, where the displacement $\Delta x(\tau) = x(t+\tau) - x(t)$ along one axis is measured over a time interval τ. In equilibrium, this linear dependence on τ is only expected for motion in simple liquids. In viscoelastic materials, such as polymer solutions, subdiffusive motion (red) is expected in equilibrium. By contrast, superdiffusive motion (green) often indicates partially or fully directed motion (e.g., for transport along a substrate) (11).
Computational aside

Notion of “mean squared distance” (MSD)

\[<x^2> = D t \]

- \(<x^2> \) - Mean-squared distance
- \(D \) – ‘diffusion’ constant
- \(t \) – time allowed before ‘checking’ \(<x^2> \)

We can do this in 1-D, 2-D, 3-D, or higher....

Imagine a grid, upon which we take a step in a random direction. We can then trace out a path as time goes on.

If we consider an ‘ensemble’ of random walkers, each starting at the origin and independent of one another, computationally it’s easy for us to keep track of the average net movement (Mean Squared Distance, MSD)
Giordano (1997)

\[\text{Figure 7.10: Left: } x \text{ versus step number (that is, time) for two random walks in one dimension. Here the steps were of random lengths in the range } -1 \text{ to } 1. \text{ Right: } \langle x^2 \rangle \text{ as a function of time for a collection of these one-dimensional random walks. The results for 500 walks were averaged.} \]

\[\rightarrow \text{ So while each individual walker is random, the basic idea is that in an } \textit{ensemble average}, \text{ a repeatable/consistent trend emerges} \]
Computational aside

- Want some sort of programmable interface (take PHYS 2030!)

- Matlab is one option which we will use here....

- ... but there are many options available (e.g., Mathematica, Maple, Python, Octave, C, Java, etc....)
ensemble of N (independent) walkers
- Each takes M total steps, each step either left or right
- Note that the for loop averages as it goes
Computational aside

Representative traces from three different (independent) walkers

Mean-squared distance traveled by a large ensemble of walkers

$\langle x^2 \rangle = D t$
Computational aside

- Can also compute in 2-D with a boundary (and maybe a bias) in place
% Simulates a 2-D Brownian walker
% - step size is unit value with normally distrib. val.
% - direction-wise, allows for either (via A.Pbias):
% o step direction is uniformally distributed over circle
% o Gaussian-like directional bias (kinda kludgy, but works)
% - [IN PROGRESS] allow for a (circular) boundary condition (via A.Pbound)
% that either reflects or is periodic

clear

walkerNum = 200; % # of walkers to compute
steps = 500; % # of steps to take by walker
A0 = 0.1; % limiting stochastic factor (re 1) for unit step size (A0=0 --> unit radial steps, A0>0 introduce Gaussian variance)

A.Pbias = 0; % boolean to create a directional bias
A.alpha = 0.2; % bias factor [0,1] --> small (-0.1 means stronger bias)
A.offset = 0.75; % offset direction for bias [cyc]

A.force1D = 0; % boolean to force angle to be 0 or pi (thus making this 1-D)

A.Pbound = 1; % boolean to create circular boundary (i.e., walkers constrained)
A.bndR = 20; % radius of bounding wall (re origin)
A.boundType = 0; % boundary condition (req. A.Pbound=1): 0-"hard" (reflecting), 1-periodic

axLim = 25; % bounds for plotting (Fig.66)
kk = 1; % particle ID to visualize a single walker (Fig.66)
animate = 1; % boolean to turn on/off movie for an individual walker (Fig.66)
numWplot = 5; % # of walkers to plot individual (r^2) paths (Fig.4)

% if a constrained walk, force bounding condition (A.bndR) to be much
% larger than mean unit step size (helps avoid some coding headaches below)
if (A.Pbound==1 && A.bndR <= 5), disp('Make larger bounding condition'); end

for m = 1:walkerNum
 % walker m initially at origin [i.e., cartesian (0,0)]
 P(m).coord(1,:) = [0 0];

 for nn = 1:steps
 % (radial) size of nn'th step for m'th walker
 if (P(m).A(nn)<0), P(m).A(nn)=0; end
 % direction of nn'th step for m'th walker (allows possibility of bias)
 if A.Pbias==0
 P(m).theta(nn) = rand(1)*2*pi; % no bias
 else
 if (m==1 && nn==2), disp('Radial bias in effect'); end
 P(m).theta(nn) = (A.offset + A.alpha.*randn(1))*2*pi; % w/ radial bias
 end
 end
% constrain angle such that movement is essentially 1-D
if A.force1D==1
 P(m).theta(nn)= round(P(m).theta(nn)/(2*pi))*pi;
end

% update last position and store away in Cartesian and radial coords.
P(m).coord(nn,:)= [P(m).coord(nn-1,1)+P(m).A(nn)*cos(P(m).theta(nn)) P(m).coord(nn-1,2)+P(m).A(nn)*sin(P(m).theta(nn))];
P(m).rsq(nn)= P(m).coord(nn,1)^2 + P(m).coord(nn,2)^2; % new radial position (squared)
P(m).phi(nn)= atan2(P(m).coord(nn,2),P(m).coord(nn,1)); % angle of new position re origin

% if constrained, check that new coords. aren't past wall (otherwise "reflect")
if A.Pbound==1
 if (m==1 && nn==2 && A.boundType==0), disp('Circular hard/reflecting boundary in effect'); end
 if (m==1 && nn==2 && A.boundType==0), disp('Circular periodic boundary in effect'); end
 temp1= sqrt(P(m).rsq(nn)); % dummy to reduce re-computation
 if temp1 >= A.bndR
 if A.boundType==0
 % ### HARD REFLECTION ###
 % angle stays the same, only radius changes (and in a simple way)
 temp2= 2*A.bndR- temp1; % reflected radial length
 disp([temp1 P(m).A(nn) P(m).theta(nn) P(m).phi(nn) temp2]); % for debugging
 elseif A.boundType==1
 % ### PERIODIC B.C. ###
 % both radius changes and angle flips 180
 temp2= 2*A.bndR- temp1; % reflected radial length
 P(m).phi(nn)= mod(P(m).phi(nn)+pi,2*pi);
 end
 end
end

P(m).rsq(nn)= temp2^2; % squared version
P(m).coord(nn,1)= temp2*cos(P(m).phi(nn));
P(m).coord(nn,2)= temp2*sin(P(m).phi(nn));
end

% determine MSD
P(m).time(nn)= nn; % "time" is simply the step number (can rescale as needed)
P(m).MSD(nn)= sqrt(P(m).coord(nn,1)^2 + P(m).coord(nn,2)^2); % radial position (not squared)
P(m).MSD(nn)= P(m).coord(nn,1)^2 + P(m).coord(nn,2)^2; % squared to get the "S" in MSD
P(m).MSD(nn)= P(m).rsq(nn); % note that this is the radial position squared (hence "S" in MSD)
end
end

% compute mean MSD (across all walkers) ---> KLUDGE (better way to do this sans loops??)
for nn=1:steps
 for m= 1:walkerNum
 val(m)= P(m).MSD(nn);
 end
 meanMSD(nn)= mean(val);
end
% --------
% plot vals. for a (specified) individual walker
if 1==1
 figure(1); clf;
 subplot(211); plot(P(kk).coord(:,1),P(kk).coord(:,2),'k.-');
 xlabel('x'); ylabel('y'); grid on; hold on; title('Walker position')
 axis([-axLim axLim -axLim axLim])
% --- (plot a bounding circle)
 if A.Pbound==1
 th= 0:pi/50:2*pi;
 xunit= A.bndR*cos(th); yunit= A.bndR*sin(th);
 h66= plot(xunit, yunit,'r-'); % Kludge numLim
 end
% --- (plot MSD for an individual walker)
 subplot(212); plot(P(kk).time,P(kk).MSD,'k-');
 xlabel('Time'); ylabel('Radial displacement (squared)'); grid on; hold on;
end
% --------
% plot MSD for the ensemble
figure(2); clf;
plot(P(m).time,meanMSD,'k-');
xlabel('Time'); ylabel('MSD'); grid on; hold on;
% if constrained, visualize effective bounding limit
 if (A.Pbound==1), h2B= stem(A.bndR^2,max(meanMSD),'r--','LineWidth',1);
 legend(h2B,'Bounding radius (squared)','Location','SouthEast');
 end
% --------
% plot distribution of angular values (polar histogram)
if 1==0
 figure(3); clf;
 % == (single walker) directions taken for each step for an individual walker
 subplot(221); h3= rose(P(kk).theta,30);
 set(h3,'LineWidth',1.5); x = get(h3,'Xdata'); y = get(h3,'Ydata');
 g= patch(x,y,'y');
 title('All steps for a single walker'); grid on; hold on;
 % == (all walkers) directions taken for all steps of all walkers
 subplot(223); h3= rose([P(:).theta],30);
 set(h3,'LineWidth',1.5); x = get(h3,'Xdata'); y = get(h3,'Ydata');
 g= patch(x,y,'y');
 title('All steps for all walkers'); grid on; hold on;
 % == (all walkers) final position for all walkers [KLUDGE: not sure how to do sans loop]
 for mm=1:numel(P) bank(mm)= P(mm).phi(end); end
 subplot(224); h3= rose(bank,floor(numel(P)/15));
 set(h3,'LineWidth',1.5); x = get(h3,'Xdata'); y = get(h3,'Ydata');
 g= patch(x,y,'y');
 title('Final ang. position of all walkers'); grid on; hold on;
end
% plot time course (or r^2) for several walkers? (see also Fig.1B)
if 1==1
 figure(4); clf;
 for n=1:numWplot
 hh = 0.8*n/numWplot; % shading factor (to discern different traces)
 plot(P(n).time,P(n).MSD,'-','Color',hh*[1 1 1]); grid on; hold on;
 end
 leg = plot(P(m).time,meanMSD,'r--','LineWidth',2); % also plot ensemble MSD
 xlabel('Time'); ylabel('Radial displacement (squared)');
 title(['Bounding limit= ',num2str(A.bndR),'(squared= ',num2str(A.bndR^2),')']);
 legend(leg,'ensemble MSD','Location','NorthWest');
end

% movie for an individual walker
if animate==1
 figure(66); clf; axis([-axLim axLim -axLim axLim]); grid on; hold on;
 for nn=2:steps
 % --- (plot a bounding circle)
 if A.Pbound==1
 th = 0:pi/50:2*pi; xunit = A.bndR*cos(th); yunit = A.bndR*sin(th);
 h66 = plot(xunit, yunit,'r-');
 end
 % --- (plot/update the track)
 plot(P(kk).coord(nn,1),P(kk).coord(nn,2),'ko-');
 plot([P(kk).coord(nn-1,1) P(kk).coord(nn,1)]',[P(kk).coord(nn-1,2) P(kk).coord(nn,2)],'k.-');
 pause(0.04); % {0.04}
 end
end
Introducing a bias.....
Rough analogy... (ignore convective currents)
So “why” might a bacteria move itself?

- Chemical environment may matter → chemotaxis

“Ooh, food over that way! Let’s go!”

“Ugh, poison! Let’s get out of here!”

The physics of eukaryotic chemotaxis (Levine & Rappel; Physics Today, 2013)
Case study: Chemotaxis

Idea: Sum together various contributions to get a net effective directionality

The receptor distribution conveys information about the gradient's direction. To see how, imagine a two-dimensional circular cell of diameter d with receptors located at equidistant angles θ_j and consider the cell placed in a linearly varying field. The statistic Φ defined through

$$\Phi = \text{Arg} \left(\frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j} S_j \right)$$

acts as an estimator of the gradient direction. ("Arg" stands for "argument," the phase of the complex number that follows the term.) That is because, in the sum on the right-hand side of equation 2, the S values on the higher-concentration side of the cell are more likely to be 1 than those on the lower-concentration side; hence the phases on the higher-concentration side are weighted more heavily.

The physics of eukaryotic chemotaxis (Levine & Rappel; Physics Today, 2013)
Case study: Chemotaxis

Figure 3. Cell tracks. The colored lines, whose origins have been brought to a common point, depict the observed paths of *Dictyostelium discoideum* cells through a chemical solution whose concentration changes by 10% across the 10-µm distance typical of a cell diameter. The tracks exhibit considerable motile variability; even for gradients steeper than those pertinent to the figure, a typical maximal chemotactic index, defined as the ratio of the distance traveled in the gradient direction to the total distance traveled, is at most about 0.7. The arrow indicates the direction of increasing chemoattractant concentration. (Adapted from ref. 4.)
Case study: Chemotaxis

Life at low Reynolds number

E. M. Purcell
Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138
(Received 12 June 1976)

American Journal of Physics, Vol. 45, No. 1, January 1977

Note: Purcell (1912-1997) won the 1952 Nobel Prize for discovering NMR

➢ How far does a bacteria need to swim?

➢ Answer depends upon its speed relative to diffusion

To out-swim diffusion:

\[l \geq \frac{D}{v} \]

If \(D = 10^{-5} \text{ cm}^2/\text{sec} \), \(v = 0.003 \text{ cm/sec} \)

\[l \geq 30 \mu \]

"If you don't swim that far you haven't gone anywhere."
Case study: Chemotaxis

Expects some of the structure we saw in Berg’s E. coli tracks....

\[l \geq \frac{D}{v} \]

if \(D = 10^{-5} \text{ cm/ sec} \), \(v = 0.003 \text{ cm/ sec} \)

\[l \geq 30 \mu \]

"If you don't swim that far you haven’t gone anywhere."
Collective dynamics

- Bacteria swimming alone versus.....

- ... lots of (interacting) bacteria swimming together

→ Swarming

Bacteriological Reviews, Dec. 1972, p. 478-503
Copyright © 1972 American Society for Microbiology

Bacterial Surface Translocation: a Survey and a Classification

Jørgen Henrichsen

Department of Diagnostic Bacteriology, Statens Seruminstitut, Copenhagen, Denmark
Bacteria of the species *Bacillus subtilis* were inoculated at the center of a dish with gelose containing nutrients. The bacteria start mass-migrating outwards about twelve hours after inoculation, forming dendrites which reach the border of the dish.
Case study: Swarming

- Key idea here is that the swimmers can interact

- Notion of collective dynamics

→ The “whole” is more/different from the sum of the parts

Statistical mechanics for natural flocks of birds

William Bialeka, Andrea Cavagnab,c, Irene Giardinab,c,1, Thierry Morad, Edmondo Silvestrib,c,2, Massimiliano Vialeb,c, and Aleksandra M. Walczaka

4786–4791 | PNAS | March 27, 2012 | vol. 109 | no. 13

Flocking is a typical example of emergent collective behavior, where interactions between individuals produce collective patterns on the large scale. Here we show how a quantitative microscopic theory for directional ordering in a flock can be derived directly from field data. We construct the minimally structured (maximum entropy) model consistent with experimental correlations in large flocks of starlings. The maximum entropy model shows that local, pairwise interactions between birds are sufficient to correctly predict the propagation of order throughout entire flocks of starlings, with no free parameters. We also find that the number of interacting neighbors is independent of flock density, confirming that interactions are ruled by topological rather than metric distance. Finally, by comparing flocks of different sizes, the model correctly accounts for the observed scale invariance of long-range correlations among the fluctuations in flight direction.
A swarm-like flock of starlings
Fig. 1. The raw data. (A) One snapshot from flocking event 28–10, $N = 1,246$ birds (see SI Appendix, Table S1). (B) Instantaneous vector velocities of all the individuals in this snapshot, normalized as $\vec{s}_i = \vec{v}_i/|\vec{v}_i|$.

The maximum entropy distribution consistent with the directional correlations C_{ij} is

$$P(\{\vec{s}_i\}) = \frac{1}{Z(\{J_{ij}\})} \exp \left[\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} J_{ij} \vec{s}_i \cdot \vec{s}_j \right], \quad [1]$$
Case study: Flocking

The maximum entropy distribution consistent with the directional correlations C_{ij} is

$$P\left(\{\vec{s}_i\}\right) = \frac{1}{Z(\{J_{ij}\})} \exp\left[\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} J_{ij} \vec{s}_i \cdot \vec{s}_j\right], \quad [1]$$

Fig. 1. The raw data. (A) One snapshot from flocking event 28–10, $N = 1,246$ birds (see SI Appendix, Table S1). (B) Instantaneous vector velocities of all the individuals in this snapshot, normalized as $\vec{s}_i = \vec{v}_i / |\vec{v}_i|$. We consider flocks of European starlings, *Sturnus vulgaris*, as in Fig. 1A. At any given instant of time, following refs. 11–13, we can attach to each bird i a vector velocity \vec{v}_i and define the normalized velocity $\vec{s}_i = \vec{v}_i / |\vec{v}_i|$ (Fig. 1B). On the hypothesis that flocks have statistically stationary states, we can think of all these normalized velocities as being drawn (jointly) from a probability distribution $P(\{\vec{s}_i\})$. It is not possible to infer this full distribution directly from experiments, because the space of states specified by $\{\vec{s}_i\}$ is too large. However, what we can measure from field data is the matrix of correlations between the normalized velocities, $C_{ij} = \langle \vec{s}_i \cdot \vec{s}_j \rangle$. There are infinitely many distributions $P(\{\vec{s}_i\})$ that are consistent with the measured correlations, but out of all these distributions, there is one that has minimal structure: It describes a system that is as random as it can be while still matching the experimental data. This distribution is the one with maximum entropy (10).

It should be emphasized that the maximum entropy principle is not a “modeling assumption;” rather it is the absence of assumptions. Any other model that accounts for the observed correlations will have more structure and hence (explicitly or implicitly) assumes something about the nature of the interactions in the flock beyond what is required to match the data. Of course the fact that the maximum entropy model is minimally structured does not make it correct. It could be, for example, that individual birds set their flight direction by computing a complicated nonlinear combination of the velocities from multiple neighbors, in which case correlations among pairs of birds would be insufficient to capture the essence of the ordering mechanism. We view the maximum entropy model as a powerful starting point, from which, as we will see, we can generate detailed and testable predictions.
Question:
What differences are there for micro- vs. macroscopic motors?

Life at low Reynolds number

E. M. Purcell
Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138
(Received 12 June 1976)

But I want to take you into the world of very low Reynolds number—a world which is inhabited by the overwhelming majority of the organisms in this room. This world is quite different from the one that we have developed our intuitions in.

Note: Purcell (1912-1997) won the 1952 Nobel Prize for his work on NMR.
Chapter 5

Life in the slow lane: the low Reynolds-number world

The Focus Question for this chapter is:

Biological question: Why do bacteria swim differently from fish?

Physical idea: The equations of motion appropriate to the nanoworld behave differently under *time reversal* from those of the macroworld.
Reynolds number \(R \) is a dimensionless number that indicates the ratio of inertial to viscous forces.

\[
R = \frac{avp}{\eta} = \frac{av}{\nu}
\]

\(\approx 10^{-2} \text{ cm}^2/\text{sec} \) for water.
Aside: Viscosity

Viscosity (η) deals how a liquid “deforms” due to stress (i.e., forces) applied to it.

Tied to how individual fluid molecules interact and friction arising from such

Table 5.1: Density, viscosity and viscous critical force for some common fluids at 25°C.

<table>
<thead>
<tr>
<th>Fluid</th>
<th>ρ_m (kg m$^{-3}$)</th>
<th>η (Pa s)</th>
<th>f_{crit} (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1</td>
<td>$2 \cdot 10^{-5}$</td>
<td>$4 \cdot 10^{-10}$</td>
</tr>
<tr>
<td>Water</td>
<td>1000</td>
<td>0.0009</td>
<td>$8 \cdot 10^{-10}$</td>
</tr>
<tr>
<td>Olive oil</td>
<td>900</td>
<td>0.080</td>
<td>$4 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>Glycerine</td>
<td>1300</td>
<td>1</td>
<td>0.0008</td>
</tr>
<tr>
<td>Corn syrup</td>
<td>1000</td>
<td>5</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Aside: Viscosity

“Laminar shear of fluid between two plates. Friction between the fluid and the moving boundaries causes the fluid to shear. The force required for this action is a measure of the fluid's viscosity.”

Let’s firm this up a bit more....

Fig. 4.2. A viscous fluid contained between flat plates at $y = 0$ and $y = h$. The area of each plate is A. The bottom plate is fixed. The top one is propelled to the right by a force in the x direction, F_x. Arrows show the velocity of the fluid relative to the bottom plate at different distances from this plate, y.
Aside: Viscosity

Let’s firm this up a bit more....

Linear relationship in fluid velocity
(i.e., fluid flows in “layers” → laminar flow)

\[v_x(y) = \frac{v_x(h)}{h} y \]

Shear “force”

\[\frac{\partial v_x}{\partial y} \]

\[F_x = \eta A \left. \frac{\partial v_x}{\partial y} \right|_{y=h} \]

→ Viscosity (\(\eta \)) is the constant of proportionality between applied force and shear

Berg (1993)