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Resting Potential: Model considering only a multiple permeant ions

- What if different ions are able to diffuse?
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Voltage-dependent conductances?
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Figure 7.30

—> For physiological K+ concentrations, potassium is a dominant ion



Is a purely passive model adequate?

Inside Cn +
']TL
. . . + + GTI.
Inside cell: high [K*], low [Na™] Membrane J v
Outside cell: low [K*], high [Na*] .
.
lon | G, (S/em®) | Gu/G | 2/ | Vi, (mV) | I
K™ 3.7 % 10~* 0.55 0.05 —72 Outside © -
Na* 1%x10° | 0.016 | 98 | +55 A
leakage | 3.0 x 10~* 0.44 — —49
Jx = Gg(VS — Vk) =0.37 x 1073 (=60 + 72) x 1073 = +4 uA/cm*
K* efflux
Na* influx
INa = GNna(VS = Vng) =1 X 1073(=60 — 55) X 1073 =

-1 uA/cm

—> Passive case unsustainable! RT Cl RT . (¢S RT . (¢}
_ —1In = —In =...=——1In
(eventually leads to equilibrium) z,F zoF



Table 7.4 Net flux of ions across the membranes of nerve axons during a propagated
action potential (Cohen and De Weer, 1977). The ion fluxes are given per action
potential.

Preparation K* efflux Na* influx
(pmol/cm2 )

Loligo forbesi axon 3.0 3.5
Loligo pealei axon o s
Sepia officinalis axon 3.6 3.8
Homarus nerve 4.1 Dl
Carcinus nerve 1.7=20 -
Rabbit vagus nerve 1 —

—> Action potentials make it even worse!



lon Pumps
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- Need an ‘active’ (i.e., metabolically-dependent) mechanism to maintain
normal physiological charge separation (e.g., Na*/K* pump)



lon Pumps
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- ‘Active’ implies energy is used to pump (i.e., create a current)
against the electrochemical gradient
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lon Pumps
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- Does a pump contribute to the
membrane potential?

(i.e., does active Na* efflux exceed active K* influx?)
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De Weer & Geduldig (Science, 1973)



Axon pre-loaded w/ radioactive 22Na*

Light grey bars indicate reduced external K* concentration
Dark grey bars indicate addition of strophanthidin (S) [“a
cardiac glycoside which mechanism of action is similar to Digitalis,

Ouabain and digitoxin. It specifically inhibits the membrane protein
Na+/ K+ ATPase”, wikipedial]

Top shows resting potential, bottom a proxy measure for
Na* efflux (via the radioactive rate count)
Ref: De Weer & Geduldig (Science, 1973)

- Pump inhibition (via strophanthidin or
change in [K*]) indicates pump causes
several mV of hyperpolarization

- Need to be careful experimentally when
potentially (pun!) affecting both active and
passive transport mechanisms
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Na+ efflux is metabolically dependent

= Axons pre-loaded w/ radioactive 2*Na* (left, center) or perfused w/ dialysis tubing (right)

= Light grey bars indicate addition of metabolic poisons (left, center) or ATP (right) (“the molecular unit of currency of intracellular
energy transfer’, Wikipedia)

= Plots use a proxy measure for Na* efflux (“The change in count rate with time was proportional to efflux of radioactive Na”)

= Refs: Hodgkin & Keynes (1955), Mullins & Brinley (1967)

Efflux of ?*Na (counts/min per min)

2 -~ /:E\ 100+ 30 4 ATP ATP
NaCN g - DNP
1 g N ;f
g é )
B i n
< = ®
2 104 = °
S ] ol
— 5 e
g 85 10 A 0\. °e
X g .
0.1 4 = = .! N
] v 3 ] P 1§ .
] = wo
0.05 T T T T T 1 E 1 T T T T T 0 !1’ T T
0 50 100 150 200 250 300 0 50 100 150 200 250 0 20 40 60 80 100
Time (minutes) Time (minutes) Time (minutes)
Figure 7.36 Figure 7.37 Figure 7.39

= Note decreasing in efflux before poisons (due to limited amount of tagged Na)

= Note distinction between “reversible” and irreversible” effects

- Taken together, data are suggestive that efflux is metabolically-dependent



Cardiac Glycosides = Block Na+/K+ pump

= Ref: Baker & Willis (1972)
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Figure 7.41

—> Cardiac glycosides (e.g., ouabain) inhibit/block Na*/K* pump

(though these drugs had long been used to treat heart failure, it wasn’t until ~1950s that it was understood how)



Pump Dependence Upon lon Concentration

= 120- Addition of test solution
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- Pump activity linked to concentration of both Na* and K* Figure 7.42



Electrogenicity of Na*/K* pump? 58 -

B K+ S K*
E .
3 ‘
g o 60 1
Does active efflux of Na* exceed active influx of K*? 02
£ 62

. G
V;(n:ZG:; n"—ZJa 8_

Can stimulating pumps cause larger electrogenic effect?

.v. 2 _ .I—-L"qv_
—40 } Na® Li* a |
~50 W 0 " T . . T . ,
0 30 60 90

K+ Nat b Time (minutes)

—40
» } - & f Figure 7.44

QOuabain Nat

Rate constant
(10% /min)
e
|

Membrane potential (mV)
Z
&
"

0 10 20 30
Time (minutes)

Figure 7.45



Electrogenicity of Na+/K+ pump?

a

b
= Snail neurons impaled by three pipettes: one g
to measure membrane potential and two to -
inject (intracellularly) a specific ion type E
= Grey bars indicate ion injection &
= Bottom traces also includes condition where S :
ot Quabain 7.+
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- Evidence leading towards the notion

of the Na*/K* pump
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(Na*-K*)-ATPase
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Family of related "channels" Family of related "pumps"

H. Hebert, P. Purhonen, H. Vorum, K. Thomsen, and A.BB. Maunsback (2001),
J. Mol. Biol. 314:479-494.

Y. Jiang, A. Lee, J. Chen, V. Ruta, M. Cadene, B. Chalt, and R. MacKinnon (2003),
Nature 423:33-41.

—>X-ray crystallography & electron microscopy can reveal structure of
voltage-gated channels (i.e., integral membrane proteins)
[we'll discuss these techniques in BPHS 4090]
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Looking Ahead: Hodgkin-Huxley network
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Fig.4.7 (vol.2)



